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Abstract:

The base balance wind tunnel testing technigue was used to determine the wind
loading on a range of telecommunication antennas and head frames. The cross-
wind and torsional components of the wind loading were typically small, and
the along-wind drag force dominated the response. As more antennas were
added to the head frame the peak along-wind drag typically increased. The
magnitude of the increase is complex due to significant shielding effects.
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1. Introduction

The top of typical telecommunication towers consist of a headframe with a
number of antennas attached, Fig. 1. The headframe is generally a lightweight
steel construction located at the top of the mast and is used for mounting
multiple antennas and allowing access for maintenance. Antennas are typically
elongated of circular cylindrical elements and mounted on the headframe or
directly on the mast.

Estimation of the wind induced drag force on these structures is complicated
due to both positive and negative interference effects. Current practice is to use
proprietary wind tunnel results or use a wind loading standard, which has not
been specifically written for such a complex task. (ASCE, 2002, British
Standard, 1997, Standards Australia, 2002). When using these standards,
designers typically sum the individual member drag force and apply an arbitrary
shielding factor.

Fig. 1: Typical communication tower with antennas and headframe

Proprietary model and full scale wind tunnel tests have been conducted, but
results have not been made freely available. As mentioned above, there are
sections in wind loading standards which could be adapted to allow an
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estimation of the drag force on these structures, there is little referenced in the
literature. The series of model tests described herein provides design
information and guidance for estimating the along wind mean drag coefficients
for different antenna configurations. Assuming quasi-steady theory, the mean
drag coefficients can be scaled to prototype scale. The dynamic nature of
communication towers was not investigated in this report, as this is primarily a
function of the stiffness of the entire system,

2. Literature review

Literature on wind loading on antennas and head frames is reasonably limited,
probably due to the apparent simple nature of the problem. Proprietary work has
been conducted in determining the wind loads on specific structures, however
little is freely and easily available in the public domain.

An in depth review of the wind loading on antennas and frame structures is
given by Holmes (2001).

The drag force on basic cylindrical shapes can be readily estimated using
information contained in most wind loading design standards (Standards
Australia, 2002, ASCE, 2002, British Standard, 2002). The drag force on more
complex shapes can be found in most fluid mechanic textbooks and ESDU,
1971, 1979. The drag for most antennas will lie somewhere between the values
for a sharp-cornered rectangle and circular/elliptical section. Although easy to
determine for the case where the wind is blowing orthogonal to an axis of
symmetry; this becomes more difficult as the angle of attack changes. It was
therefore considered important to test isolated antenna to give directional drag
forces for standard antenna cross-sectional profiles.

Typical head frames can be divided into two categories; member (turret and
Mercedes) and frames (square, triangular, and circular), Fig. 4. It is difficult to
calculate the drag force on both types of head frames due to interference effects
(both positive and negative) between closely spaced members. Interference has
been studied extensively for specific cases including, ESDU, 1984, 198243,
Marchman and Werme, 1982, and can be significant for closely spaced items.
ESDU 1982, indicates that for structural members whose spacing is greater than
10 times the width of the member normal to the wind direction, interference
effects will be negligible. This would indicate that for the isolated circular,
turret, and Mercedes head frames interference may be important, but for the
square and triangular there would only be expected to be slight interference for
the corner members. Evidently with the antenna attached interference effects
will be more significant.

Wind loading on lattice frames and towers has been studied in some detail
culminating in ESDU 1982b, 1981, Standards Australia, 1994, and British
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Standard, 1986. The differences between a lattice tower and a
telecommunication head frame include:

a lattice tower is limited to a square or triangular plan shape,

a lattice tower has an identical member pattern on all faces of the tower,

a lattice tower has a significantly larger height:width ratio, and

a lattice tower has few internal members.

The drag coefficient for a lattice tower is a function of the shape of the
structural members (circular, or sharp edged), and the solidity of one face of the
tower. The solidity is calculated as the ratio of the projected solid area of the
members on one face of the tower to the total enclosed area of the tower section
under consideration.

Later experimental work by Carril et al., 2003 showed that the code estimations
generally yielded a good approximation to the measured wind loads. However,
they concluded that the difference between the measured and code calculated
predictions were due to the lateral members which increase the wind loading,
but are not considered in the code calculation. This has a significant influence
when extrapolating to head frames where there are a higher proportion of
internal and lateral members in the structure.

Interference effects of microwave dish antennas have also been researched by
Holmes et al. 1993 and Carrill et al. 2003. Both publications indicate that the
wind load could increase by a factor of up to 30%. However, it should be noted
that the microwave antenna tested were of a size equivalent to, or in excess of,
the width of the tower. Applying the proposed interference factors, which are
contained in the various design codes and standards to prismatic antennas
mounted on head frames is likely to introduce significant inconsistencies.

In summary, there is little available information to aid the designer in
determining the wind load on typical head frames with antennas. It is
considered that the estimation of the wind loading on an isolated head frame
would be best conducted by summing the drag forces on individual members.
Interference effects are expected to be significant when antennas are connected
to the head frame and an interference factor should be employed. However, the
interference factor contained in the current codes and standards are for
microwave dish antennas, which are of a similar size to the supporting lattice
tower.

3. Experimental technique

Wind tunnel testing was conducted on 1:5 scale models mounted in the centre
of the No. 1 boundary layer wind tunnel located in the School of Civil
Engineering. The wind tunnel is approximately 2.4 m wide and 2.0 m high. The
mean velocity and turbulence profiles are shown in Fig. 2 and show essentially
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uniform flow across the centre of the tunnel with a turbulence intensity of
approximately 10%. The scale of turbulence is too small for models of this
scale, but since the full-scale structures would be embedded in any air stream
the quasi-steady assumption is assumed to apply.

Testing was conducted on three different antenna types, RFS DPS60, RFS
APXV-18, and Argus JPX310D, Fig. 3, tested individually and mounted on five
typical head frames: square, triangular, circular, turret and Mercedes, Fig. 4. All
head frames were manufactured using circular hollow aluminium sections.
Specific antenna layouts will be discussed in the relevant sections. The antennas
are generally connected to the head frame via a mount, which consists of a
vertical circular element in the order of 2.2 m long. The headframes were all
constructed of circular members. The primary prototype dimensions of the
antennas and head frames are given in Fig. 6 and Fig. 5, with full-scale
drawings in Appendix 1.

The models were mounted on a six degree of freedom base balance in the free
stream of the No. 1 boundary layer wind tunnel at The University of Sydney
with the centre of rotation located in the centre of the support mast. The force
and moment signals were recorded at 40 Hz for a period of 20 seconds. In
accordance with telecommunication industry practice the mean along and cross
wind drag forces have been divided by the mean dynamic pressure in the free
stream at mid height of the model to give an ‘equivalent sail area’ (ESA), Eq. 1.
The mean dynamic pressure was measured using a Pitot-static tube situated in
the free stream at mid height of the model. Mean torque values have been
expressed as an eccentricity based on the along-wind drag force, Eq. 2, which
can then be expressed as a percentage of the frontal width of the head frame.

F

Equivalent Sail Area, ESA = —*— (=C,-A.,) [1]
~p-V?
9 p
Eccentricity, e, = M, [2]
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Fig. 2: Wind speed and turbulence profile in wind tunnel

Fig. 3: Photos of antennas tested
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c. circular d. urret e. Mercedes
Fig. 4: Photos of head frames tested
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Fig. 5: Schematic of antennas tested
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Fig. 6: Schematic of various head frames tested
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4. Results

Reynolds number independence was investigated for individual panels and head
frames. Typical results for the JPX310D antenna and the triangular head frame
are shown in Fig. 7, where ESA is as defined in Eqg. 1, and Reynolds number is
defined in Eq. 3.

rRn = YD [3]
A%

Where V is the mean free stream wind speed, D is a characteristic length taken
as the width of the panel (38 mm) or the average diameter of the members (15
mm), and v is the kinematic viscosity of air 1.5 x 10 m“/s.

2.5 [ —— -
2.0

15
1.0
0.5 A S . e

0.0 ‘ ‘
1000 10000 100000 1000000

ESA /nf

Reynolds number

—e— JPX310D antenna —s— Tiangular head frame

Fig. 7: Effective sail area versus Reynolds number

It is evident that the results are essentially independent of Reynolds number. It
should be noted that these values of Reynolds number for the circular members
would be classified as sub-critical according to Standards Australia
AS/NZS1170.2:2002 Appendix E. All subsequent results are presented for a
model wind speed of approximately 12 m/s.

4.1.Individual antennas

Individual antenna were mounted on a stand and tested on a six degree of
freedom base balance, Fig. 3. Testing was carried out at 15° intervals, with the
stand located to the lee of the panel to reduce interference effects. The axis
notation for the tests is shown in Fig. 8. Along- (x) and cross-wind (y) effective
sail areas as calculated by equation 1 are given in Fig. 9 for the isolated panels.
The form of the graphs is similar for all panel types with the along wind ESA
reasonably symmetric about 90°, but slightly higher in magnitude when the
wind is blowing onto the rear of the panel due to the reduction in roundness of
the body. The cross-wind ESA has a peak in the response when the wind is
oblique to the curved portion of the antenna. As would be expected for this
shape of body, the peak cross-wind ESA is lower than the along —wind ESA.
Maximum along-wind ESA are given in Table 1.
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Fig. 8: Axis notation for individual panels

—o— X

ESA /nf

—I—y

0O 15 30 45 60 75 90 105 120 135 150 165 180
Azimuth /°

a. RFS DPS60

0.6

.y 0—,’/’\‘\‘\ /\0

0.2 - /\\. —— X
—=—y
00 I I I I I [ T I I I I

-0.2

ESA /nf

0O 15 30 45 60 75 90 105 120 135 150 165 180
Azimuth /°

b. RFS APXV-18

School of Civil Engineering 13

Research Report No R881 -;?;x The University of Sydney



Wind Loading of Telecommunication Antennas and Head Frames January 2007

0.6
0.4 “\.\‘_‘\‘\‘\‘//‘/’\t
E ——X
< 0.2 -
(Lﬂ —s—Yy
0.0 I I I I I I
-0.2
0O 15 30 45 60 75 90 105 120 135 150 165 180
Azimuth /°
c.JPX310D

Fig. 9: Along and cross-wind effective sail areas for prototype individual panels

Max ESA,
Panel Im?
a large RFS DPS60-16ESX 1.2
b medium RFS APXV18-206517L 0.55
¢ small Argus JPX-310D 0.46

Table 1: Prototype max ESA for individual panels

4.2. Square head frame

All head frames were tested in isolation and in a number of commonly used
antenna arrangements. Model antennas were connected to 400 mm long, 16 mm
diameter (2 m long, 80 mm diameter at prototype scale) mounts clamped to the
head frame. Dimensional details of the prototype head frame can be found in
Appendix 1. Testing on the square head frame was carried out at 30° intervals.
The panel layout, labelling system, and axis notation are shown in Fig. 10. The
panel configurations tested are detailed in Table 2 and the Panel type (a, b, c) is
from Table 1. The notation ‘30’ indicates the panel was rotated clockwise about
the vertical axis of the mount by 30°, and the notation ‘m’ indicates a mount
was attached without a panel, otherwise nothing was attached to the head frame
at the location.

Fig. 11 shows the along-wind, cross-wind and torsional response, expressed as a
percentage of the head frame width, of the square head frame with one large and
one small panel mounted with the rear parallel to the head frame (0°) on each of
three faces of the head frame. It is evident from Fig. 11 that the cross-wind
component of the loading is small in comparison to the along-wind component;
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this is true for all head frames tested and therefore will not be discussed further
in this report. The torsional eccentricity is typically below 5% of the head frame
width and will not be discussed further in this report.

Wind 0°
direction ¢
\/ﬂ
A B C
N N N
L ( DD
y
K (] ) E
J X D F
| H G

Fig. 10: Panel layout and axis notation for the square head frame

Directional along wind responses of the square head frame in the various
configurations tested are shown in Fig. 12 to Fig. 19. It is unsurprising that an
increase in the size or number of antennas increased the total drag force.
However, the magnitude of the increase is complex due to the effects of
shielding on the head frame members and the size and orientation of the
downwind antennas. Flow visualisation showed that the position and offset of
the antenna from the frame has a significant influence on the flow patterns and
corresponding drag force. The degree of shielding to the elements behind the
panels was significant.

The direction causing the peak along wind ESA changed depending on the
antenna arrangement. Generally if the frame was relatively open the maximum
drag occurred when the panels were to the rear of the head frame, when the
sharper corners are pointing to the wind. With panels on more than one face the
peak drag generally occurs when the wind is blowing normal to a set of panels
on the windward face, and/or the panels are on the rear rather than the side. It is
evident that the effect of pivoting the panels on the peak ESA measured is
generally small.
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Panel Max ESA,
Configuration A B C|DE F|[GH I|[J KL Im?
HF Only 3.3
2 Mounts m m 3.6
2 Large 1 Face 0° a a 45
2 Large 1 Face 30° a30 a30 4.9
1 Large 1 Small 1 Face 0° c a 4.2
1 Large 1 Small 1 Face 30° c30 a30 44
2 Small 1 Face 0° c c 4.1
2 Small 1 Face 30° a a 4.1
3 Mounts m m m 3.9
3 Large 1 face 0° a a a 5.2
3 Large 1 face 30° a30 a30 a30 5.6
2 Large 1 Small 1 Face 0° a c a 4.7
2 Large 1 Small 1 Face 30° a30c30a30 5.2
3 Small 1 face 0° c c ¢ 4.3
3 Small 1 face 30° €30 ¢30 c30 4.3
4 Mounts 2 Adj. Face m m m m 3.9
4 Large 2 Adj. Face 0° a a a a 5.4
4 Large 2 Adj. Face 30° a30 a30 a30 a30 5.2
2 Large 2 Small 2 Adj. Face 0° c a c a 4.7
2 Large 2 Small 2 Adj. Face 30° [c30 a30 c30 a30 4.8
4 Small 2 Adj. Face 0° c c c c 4.2
4 Small 2 Adj. Face 30° c30 c30 c30 c30 4.3
4 Mounts 2 Opp. Face m m m m 4.0
4 Large 2 Opp. Face 0° a a a a 5.6
4 Large 2 Opp. Face 30° a30 a30, a30 a30 5.3
2 Large 2 Small 2 Opp. Face 0° | ¢ a c a 4.8
2 Large 2 Small 2 Opp. Face 30° |c30 a30, c30 a30 5.0
4 Small 2 Opp. Face 0° c c c c 4.6
4 Small 2 Opp. Face 30° c30 c30 c30 c30 4.9
6 Mounts 2 Adj. Face m m m m m m 4.1
6 Large 2 Adj. Face 0° a a a a a a 6.1
6 Large 2 Adj. Face 30° a30a30a30 a30 a30a30 6.2
4 Large 2 Small 2 Adj. Face 0° a c a a c a 5.6
4 Large 2 Small 2 Adj. Face 30° [a30c30a30 a30 c30 a30 5.6
6 Small 2 Adj. Face 0° c c ¢ c c ¢ 4.6
6 Small 2 Adj. Face 30° ¢30¢30c30 ¢30 30 c30 4.8
6 Mounts 2 Opp. Face m m m m m m 4.3
6 Large 2 Opp. Face 0° a a a a a a 6.7
6 Large 2 Opp. Face 30° a30a30a30 a30a30a30 5.9
4 Large 2 Small 2 Opp. Face0° | a ¢ a a c a 5.9
4 Large 2 Small 2 Opp. Face 30° |a30 c30 a30 a30 c30a30 5.6
6 Small 2 Opp. Face 0° c c ¢ c Cc ¢ 5.2
6 Small 2 Opp. Face 30° ¢30 ¢30 c30 €30 ¢30 30 5.0
6 Mounts 3 Face m m|m m m m 41
6 Large 3 Face 0° a ala a a a 6.2
6 Large 3 Face 30° a30 a30[a30 a30 a30 a30, 6.4
3 Large 3 Small 3 face 0° c alc a c a 55
3 Large 3 Small 3 face 30° c30 a30(c30 a30 c30 a30 5.6
6 Small 3 Face 0° c c|c c c c 4.8
6 Small 3 Face 30° c30 ¢30[c30 c30 c30 c30 5.0
9 Mounts m m m{m m m m m m 4.5
9 Large 3 face 0° a a ala a a a a a 7.4
9 Large 3 face 30° a30 a30 a30|a30 a30 a30, a30a30a30 8.2
6 Large 3 Small 3 Face 0° a c ala c a a c a 6.7
6 Large 3 Small 3 Face 30° a30 ¢30 a30]a30 c30 a30 a30c30a30 7.1
9 Small 3 face 0° c c c|c Cc cC c Cc ¢ 55
9 Small 3 face 30° ¢30 ¢30 ¢30/c30 ¢30 c30 ¢30 c30 c30 5.4

Table 2: Panel layout and max along-wind ESA for the square head frame
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Fig. 12: Along wind response of square head frame with 2 antennas on one face
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Fig. 13: Along wind response of square head frame; 3 antennas, one face
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Fig. 17: Along wind response of square head frame; 6 antennas, opposite faces
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Fig. 18: Along wind response of square head frame: 6 antennas, 3 faces
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Fig. 19: Along wind response of square head frame; 9 antennas, 3 adjacent faces
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4.3. Trianqular head frame

Testing on the triangular head frame was carried out at 15° intervals up to 120°.
The panel layout, labelling system, and axis notation are shown in Fig. 20. The
panel configurations tested are detailed in Table 3 and the Panel type (a, b, c) is
from Table 1. The notation ‘30’ indicates the panel was rotated clockwise about
the vertical axis of the mount by 30°, and the notation ‘m’ indicates a mount

was attached without a panel.

Wind
directio

00

N o

-

| H

Panel Max ESA,
Configuration A B C D E F G H I /m?
HF Only 2.4
Kick Plate 2.5
9 Mounts m m M m m m m m m 3.6
6 Large 0° a m a a m a a m a 5.7
6 Large 30° a30 m a30 a30 m a30 a30 m a30 5.7
6 Small 0° c m ¢ C¢C m ¢ C m ¢ 4.5
6 Small 30° c30 m ¢30 ¢c30 m ¢30 ¢c30 m c30 4.3
9 Large 0° a a a a a a a a a 6.5
9 Large 30° a30 a30 a30 a30 a30 a30 a30 a30 a30 6.5
6 Large 3 Small 0° a ¢ a a ¢ a a ¢ a 6.1
6 Large 3 Small 30° [a30 ¢30 a30 a30 c30 a30 a30 c30 a30 6.0
9 Small 0° c ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4.8
9 Small 30° c30 ¢30 ¢c30 c30 c30 c30 c30 c30 c30 4.5

Table 3: Panel layout and max along-wind ESA for the trianqular head frame
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Directional along wind responses of the triangular head frame in the various
configurations tested are shown in Fig. 21 and Fig. 22. It is unsurprising that an
increase in the size or number of antennas increased the total drag force.
However, the magnitude of the increase is complex due to the effects of
shielding on the head frame members and the size and orientation of the
downwind antennas. Flow visualisation showed that the position and offset of
the antenna from the frame has a significant influence on the flow patterns and
corresponding drag force. The degree of shielding to the elements behind the
panels was significant.

The along-wind ESA was reasonably independent of wind direction, but the
peak response generally occurred when the wind was blowing normal to a face
of the triangle. Again the effect of pivoting the antennas was minimal.

7

6 - > - HF Only

5 - - - Simulated Kick Plate
E 4 ormrngeenoage o0 ———-9 Mounts
X T T Tty 4 —m— 6 large 0°
v 3
W gocx==f==¥s=g=c¥toopocysog |0 6 Large 30°

—e— 6 Small 0°
1 -0+~ 6 .Small 30°
0 ‘ ‘ ‘
0 30 60 90 120
Azimuth /°

Fig. 21: Along wind response of the triangular head frame with 6 antennas

- - HF Only

—a— 9 Large 0°

---a--- 9 Large 30°

—=a— 6 Large 3 Small 0°

---0--- 6 Large 3 Small 30°

—— 9 Small 0°

1+ ---0--- 9 Small 30°

0 ‘ ‘ ‘
0 30 60 90 120

Azimuth /°

ESAX /nf

e — = X m X TN — e — X — e — —

Fig. 22: Along wind response of the triangular head frame with 9 antennas
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4.4. Circular head frame

Testing on the circular head frame was carried out at 30° intervals up to 120°.
The panel layout, labelling system, and axis notation are shown in Fig. 23. The
panel configurations tested are detailed in Table 4 and the Panel type (a, b, c) is
from Table 1. The notation ‘30’ indicates the panel was rotated clockwise about
the vertical axis of the mount by 30°, the notation ‘m’ indicates a mount was
attached without a panel, and no entry indicates there was nothing attached to
the head frame.

Wind 0°
direction ¢

Fig. 23: Panel layout and axis notation for the circular head frame

Panel Max ESA,
Configuraton A B C D E F /m?
HF Only 1.6
3 Mounts m m m 2.1
3 Large 0° a a a 3.2
3 Large 30° a30 a30 a30 3.3
3 Small 0° C C C 2.5
3 Small 30° c30 c30 c30 2.4
6 Mounts m m m m m m 2.5
6 Large 0° a a a a a a 4.3
6 Large 30° a30 a30 a30 a30 a30 a30 4.5
6 Small 0° c ¢ ¢ ¢ ¢ ¢ 2.9
6 Small 30° c30 ¢30 ¢c30 c30 c30 c30 3.1

Table 4: Panel layout and max along-wind ESA for the circular head frame

Directional along wind responses of the circular head frame in the various
configurations tested are shown in Fig. 24. It is unsurprising that an increase in
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the size or number of antennas increased the total drag force. However, the
magnitude of the increase is complex due to the effects of shielding on the head
frame members and the size and orientation of the downwind antennas. The
along-wind ESA was reasonably independent of wind direction. Generalisations
regarding wind direction are difficult for this head frame as the structural and
antenna layouts were not symmetrical. Again the effect of pivoting the antennas

was minimal.

ESAX /nf

60 90 120
Azimuth /°

- ——HF Only

- - -3 Mounts
—a— 3 Large 0°
---a--- 3 Large 30°
—e— 3 Small 0°
---0--- 3 Small 30°
- - -6 Mounts
—e— 6 Large 0°
---o--- 6 Large 30°
—=— 6 Small 0°
---0--- 6 Small 30°

Fig. 24: Along wind response of the circular head frame
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4.5. Turret head frame

Testing on the turret head frame was carried out at 15° intervals up to 120°. The
panel layout, labelling system, and axis notation are shown in Fig. 25. The panel
configurations tested are detailed in Table 5 and the Panel type (a, b, c) is from
Table 1. The notation ‘30’ indicates the panel was rotated clockwise about the
vertical axis of the mount by 30°.

Wind 0°

directi%ne/|

Fig. 25: Panel layout and axis notation for the turret head frame

Panel Max ESA,
Configuration | A B C /m?
HF Only 0.73
3 Large 0° a a a 1.8
3 Large 30° a30 a30 a30 1.8
3 Small 0° cC ¢ ¢ 1.2
3 Small 30° c30 c30 c30 1.1

Table 5: Panel layout and max along-wind ESA for the turret head frame

Directional along wind responses of the turret head frame in the various
configurations tested are shown in Fig. 26. It is unsurprising that an increase in
the size or number of antennas increased the total drag force. The simple nature
of this head frame makes it much more predictable in the wind, but there are
still complex shielding issues. The along-wind ESA was reasonably
independent of wind direction. The peak ESA occurred when the antennas were
symmetric to the wind, and depended on the shape of the antennas.
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— - —HF Only
—aA—3large 0°
---A-- 3 large 30°
—a—3Small 0°
---0--- 3 Small 30°

ESAX /nf

0.0 T T T
0 30 60 90 120
Azimuth /°
Fig. 26: Along wind response of the turret head frame
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4.6. Mercedes head frame

Testing on the Mercedes head frame was carried out at 15° intervals up to 120°.
The panel layout, labelling system, and axis notation are shown in Fig. 27. The
panel configurations tested are detailed in Table 6 and the Panel type (a, b, c) is
from Table 1. The notation ‘30’ indicates the panel was rotated clockwise about
the vertical axis of the mount by 30°, the notation ‘m’ indicates a mount was
attached without a panel.

Wind 0°
direction ¢
'S
BV QC
A
7y nP

X
F E

Fig. 27: Panel layout and axis notation for the Mercedes head frame

Panel Max ESA,

Configuration A B C D E F /m?
6 mounts m m m m 1.9
3 Large 0° m a m a m a 3.0
3 Large 30° m a30 m a30 m a30 3.0
3 Small 0° C m ¢ m ¢ m 2.4
3 Small 30° c30 m ¢330 m c30 m 2.3
6 Large 0° a a a a a a 4.1
6 Large 30° a30 a30 a30 a30 a30 a30 4.2
3 Large 3 Small 0° c a ¢ a ¢ a 3.6
3 Large 3 Small 30° ¢30 a30 c¢30 a30 c30 a30 3.5
6 Small 0° c ¢ ¢ ¢ ¢ ¢ 3.0
6 Small 30° c30 ¢30 ¢30 c30 c30 c30 2.7

Table 6: Panel layout and max along-wind ESA for the Mercedes head frame
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Directional along wind responses of the Mercedes head frame in the various
configurations tested are shown in Fig. 28. It is unsurprising that an increase in
the size or number of antennas increased the total drag force. The distribution of
ESA with direction is more consistent for this head frame with the peak
occurring when the wind is blowing from 60°; the wind normal to the front face
of a pair of panels on the same mounting frame.

- - — 6 mounts

—&— 3 Large 0°

---a-- 3 Large 30°

—=a— 3 Small 0°

---0--- 3 Small 30°

—e— 6 Large 0°

. ---o--- 6 Large 30°

—e— 3 Large 3 Small 0°

0 : : ‘ ---e--- 3 Large 3 Small 30°
0 30 60 90 120 | —— 6 Small 0°

Azimuth /° ---+-- 6 Small 30°

ESAX /nf

Fig. 28: Along wind response of the Mercedes head frame

5. Conclusions

This paper presents the results from simple drag force experiments on a range of
standard telecommunication antennas and head frames tested in isolation and in
a variety of antenna mounting configurations. The along-wind drag coefficients
are reasonably independent of wind direction, but from the directional results
and flow visualisation it is evident that shielding effects are complex and
significant. The mean cross-wind component is typically about an order of
magnitude lower than the along-wind component. The torsional component is
generally small and could be estimated by applying the along-wind drag at an
eccentricity of about 5% of the frontal width of the head frame.
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Appendix 1: Prototype antenna and head frame specifications
RFS DPS60 Antenna

- -

Radio
RFs e Installation Instruction

Syslems . 0GE
~ PtY Limited CELLU LAR ANTEN NA :3::0]\10 IRM}(\L[)(}J
[ 2.3 m PANEL Page 1 of 3
MODEL : APXV906514 or DPS60-16ESX
FREQUENCY : 824 - 960 MHz
PANEL SIZE : 23m
DESCRIPTION
The APXV906514 or DPS60-16ESX series are o
dual polarized directional sector antennas for | i
polarization diversity systems. Refer to Figure 1 for \
Antenna Details.

Individual connectors allow access to either + 45°

or - 45° polarized radiators. Refer to Figure 2 for

Antenna Polarization.

The radiator structure is contained within a : ',H l?.r'.. X,
rectangular aluminium case covered by a UV .«
stabilized plastic radome, which can be painted if
required.

The aluminium case acts as a reflector, and gives
the 65° azimuth beam width for both polarizations. "

The antennas are supplied with variable electrical

downtilt, which allows continuous adjustment

between 2° and 8° by means of a graduated dial at ELECTRICAL

the rear of the panel. " JOWNT “1: u
ADJUSTMEN N :

The control unit studs are reserved for a control

unit, which can be mounted over the dial spindle, to

enable remote adjustment of electrical downlilt.

The mounting kit, (including the mechanical tilt Tus
option) and installation for 1.3 m and 2.3 m panels

are described in installation instruction Doc No

29460E000. “ONNECTORS —

The input impedance of both polarizations is 50
ohms, with a return loss of greater than 18 dB over =
both AMPS and GSM frequency bands. The MOUNTING |
maximum input power is 500 watts. Tups

The two connectors are 7-16 bulkhead connectors
located on the rear of the panel. Each connector is
labelled showing its polarization. Refer to Figure 5.

Figure 1 Anlenna Details

Radio Frequency Systems Pty Limited
36 Garden Street, Kilsyth, Victoria, Australia, 3137
Tel: +61 3 9751 B400 Fax: +61 3 9761 5711
www.rfsworld.com
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RFS APXV-18 Antenna
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Argus JPX310D Antenna
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Square head frame
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Circular head frame
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Turret head frame
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Mercedes head frame
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