# 4 WELDED BEAM TO COLUMN MOMENT CONNECTION

### 4.5 Design capacity tables

The following Design Capacity Tables are provided, derived using DESIGN CHECK NOS 1 and 2. Column stiffening requirements must be separately assessed using DESIGN CHECK NOS 3 to 8 inclusive. Design of column stiffeners can be carried out using DESIGN CHECK NOS 9 to 17 inclusive.

### 4.6 Configuration A—Full penetration butt welds to flanges and webs

- Table 15 Universal beams Grade 300, Design section moment and web capacities
- Table 16 Welded beams Grade 300, Design section moment and web capacities

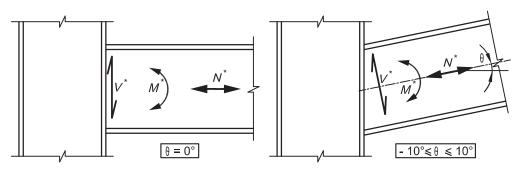
### 4.7 Configuration B—Fillet welds required to develop section moment capacity

- Table 17 Universal beams Grade 300, Weld configurations to achieve design section moment capacity,  $\phi M_s$
- Table 18 Welded beams Grade 300, Weld configurations to achieve design section moment capacity,  $\phi M_s$

### 4.8 Configuration C—Fillet welds to flanges and web

- Table 19 Universal beams Grade 300—Design moment capacity of welded connection with 10 mm flange fillet welds and 8 mm web welds
- Table 20 Universal beams Grade 300—Design moment capacity of welded connection with 8 mm flange fillet welds and 6 mm web welds






# 4 WELDED BEAM TO COLUMN MOMENT CONNECTION

# 4.7 Configuration B—Fillet welds required to develop section moment capacity

TABLE 17

# UNIVERSAL BEAMS GRADE 300 WELD CONFIGURATIONS TO ACHIEVE DESIGN SECTION MOMENT CAPACITY $\phi M_s$



CASE 1 CASE 2

|                       |      |        |     | CASE 1             |                 | CASE 2 θ≠0, N*≠0   |                |                            |
|-----------------------|------|--------|-----|--------------------|-----------------|--------------------|----------------|----------------------------|
|                       |      | We     | lds | Max V* θ=0, N*=0   |                 | Max V* Max N*      |                | ф <i>М</i> <sub>conn</sub> |
| Section,<br>Grade 300 | φMs  | Flange | Web | (plus or<br>minus) | φ <b>M</b> conn | (plus or<br>minus) | (Tens or Comp) | Refer Note                 |
| 040110405             | kNm  | EDDW/  | 40  | kN                 | kNm             | kN                 | kNm            | kN                         |
| 610UB125              | 927  | FPBW   | 10  | 708                | 927             | 708                | 201            | 927                        |
| 610UB113              | 829  | FPBW   | 10  | 660                | 829             | 660                | 183            | 829                        |
| 610UB101              | 782  | FPBW   | 10  | 660                | 782             | 660                | 176            | 782                        |
| 530UB92.4             | 640  | FPBW   | 10  | 563                | 640             | 563                | 160            | 640                        |
| 530UB82.0             | 558  | FPBW   | 10  | 526                | 558             | 526                | 142            | 558                        |
| 460UB82.1             | 496  | FPBW   | 10  | 473                | 496             | 473                | 142            | 496                        |
| 460UB74.6             | 449  | FPBW   | 10  | 431                | 449             | 431                | 129            | 449                        |
| 460UB67.1             | 399  | FPBW   | 8   | 400                | 399             | 400                | 116            | 399                        |
| 410UB59.7             | 324  | FPBW   | 8   | 328                | 324             | 328                | 103            | 324                        |
| 410UB53.7             | 304  | FPBW   | 8   | 317                | 304             | 317                | 99.0           | 304                        |
| 360UB56.7             | 273  | FPBW   | 8   | 297                | 273             | 297                | 98.0           | 273                        |
| 360UB50.7             | 242  | FPBW   | 8   | 269                | 242             | 269                | 87.5           | 242                        |
| 360UB44.7             | 222  | FPBW   | 8   | 252                | 222             | 252                | 82.5           | 222                        |
| 310UB46.2             | 197  | FPBW   | 6   | 213                | 197             | 213                | 80.0           | 197                        |
| 310UB40.4             | 182  | FPBW   | 6   | 192                | 182             | 192                | 75.0           | 182                        |
| 310UB32.0             | 134  | FPBW   | 6   | 170                | 134             | 170                | 59.0           | 134                        |
| 250UB37.3             | 140  | FPBW   | 6   | 170                | 140             | 170                | 69.0           | 140                        |
| 250UB31.4             | 114  | 10     | 8   | 159                | 114             | 131                | 58.0           | 114                        |
| 250UB25.7             | 92.0 | 10     | 8   | 128                | 92.0            | 128                | 47.0           | 92.0                       |
| 200UB29.8             | 90.0 | 10     | 8   | 104                | 90.0            | 85.0               | 55.0           | 90.0                       |
| 200UB25.4             | 74.6 | 8      | 8   | 120                | 74.6            | 106                | 47.0           | 74.6                       |
| 200UB22.3             | 65.3 | 8      | 8   | 104                | 65.3            | 104                | 41.0           | 65.3                       |
| 200UB18.2             | 51.8 | 8      | 8   | 92.0               | 51.8            | 92.0               | 33.0           | 51.8                       |

#### NOTES:

 $\phi M_{conn}$  = design moment capacity of connection,  $\phi M_{s}$  = design section moment capacity.

Case 1 applies to right angle beam to column connections, (i.e.  $\theta=0$ ) with no axial force ( $N^*=0$ ).

Case 2 applies to connections where  $\theta$  is within the range -10 to 10 degrees, and design axial force ( $N^*$ ) does not exceed the value tabulated (approx. 5% of design section capacity). Axial/moment combination to be checked separately, for the beam section.

Minimum design shear force  $V^*$  is 15% of  $\phi V_v$ , design shear capacity of section, or 40 kN (whichever is greater).

Maximum design shear force  $V^*$  limited to  $0.6\phi V_v$  to ensure  $M^*$ ,  $V^*$  combination is satisfied for the beam section.

Welds: E48XX/W50X electrodes, all welds category SP.

Fillet weld size is in mm—a larger fillet size or FPBW may be used in lieu of tabulated value. FPBW = full penetration butt weld.





# Design capacity tables for structural steel Volume 4: Rigid connections—Open sections

by

# T.J. Hogan

contributing author

N. van der Kreek

first edition—2009



# AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

# Design capacity tables for structural steel Volume 4: Rigid connections—Open sections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

### FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design capacity tables for structural steel. Volume 4: Rigid connections—Open sections

1<sup>st</sup> ed.

Bibliography.

ISBN 978 1 921476 18 1 (pbk.). ISBN 978 1 921476 19 8 (pdf.).

1. Steel, Structural—Standards – Australia.

2. Steel, Structural—Specifications – Australia.

3. Joints, (Engineering)—Design and construction.

I. van der Kreek, N.

II. Australian Steel Institute.

III. Title

(Series: Structural steel connection series).

Also in this series:

Design Capacity Tables for Structural Steel Volume 3: Simple connections—Open sections

Handbook 1: Design of structural steel connections

Design Guide 1: Bolting in structural steel connections

Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections

Design Guide 4: Flexible end plate connections

Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 10: Bolted end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate to column moment connections

Design Guide 13: Splice connections

**Disclaimer:** The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.





This publication originated as part of

Design of structural connections

First edition 1978

Third edition 1988

Fourth edition 1994

Second edition 1981

# **CONTENTS**

|                  |      | P                                 | age      |     |                                 |                                  | Page     |
|------------------|------|-----------------------------------|----------|-----|---------------------------------|----------------------------------|----------|
| List of figures  |      |                                   | iv       |     | 5.5                             | Design capacity tables           | 50       |
| List of tables   |      |                                   | ٧        |     | 5.6                             | Four bolt unstiffened end plate- | _        |
| Preface          |      |                                   | vii      |     |                                 | Design capacity tables           | 51       |
|                  |      |                                   | viii     |     | 5.7                             | Four bolt stiffened end plate—   |          |
|                  |      |                                   | viii     |     |                                 | Design capacity tables           | 53       |
| Acknowledgements |      | ix                                |          | 5.8 | Six bolt unstiffened end plate— |                                  |          |
|                  |      |                                   |          |     | 0.0                             | Design capacity tables           | 55       |
| 1                | CON  | CEPT OF DESIGN GUIDES             | 1        |     | 5.9                             | Eight bolt stiffened end plate—  |          |
|                  | 1.1  | Background                        | 1        |     | 0.0                             | Design capacity tables           | 57       |
|                  | 1.2  | Preliminary considerations        | 2        |     |                                 | Doolgii dapadity tabloo          | 01       |
|                  | 1.3  | Included connections              | 3        | 6   | BOL                             | TED END PLATE TO COLUMN          |          |
|                  |      |                                   |          |     |                                 | MENT CONNECTION                  | 58       |
| 2                | GEO  | METRICAL DETAILS                  | 9        |     | 6.1                             | Description of connection        | 58       |
|                  | 2.1  | Standard parameters               | 9        |     | 6.2                             | Typical detailing of connection  | 61       |
|                  | 2.2  | Connection components—            |          |     | 6.3                             | Calculation of design actions    | 66       |
|                  |      | Bolted moment end plate           | 10       |     | 6.4                             | Recommended design model—        | 00       |
|                  | 2.3  | Connection components—            |          |     | 0. 1                            | Summary of design checks         | 67       |
|                  |      | Column stiffeners                 | 12       |     | 6.5                             | Design capacity tables           | 68       |
|                  | 2.4  | Bolt gauges to columns for bolted |          |     | 6.6                             | Four bolt unstiffened end plate  | 69       |
|                  |      | moment end plate connection       | 15       |     | 6.7                             | Four bolt stiffened end plate    | 73       |
|                  | 2.5  | Flange cover plates for splices   | 16       |     | 6.8                             | Six bolt unstiffened end plate   | 75<br>75 |
|                  | 2.6  | Bolting layout to webs for bolted |          |     | 6.9                             | Eight bolt stiffened end plate   | 77       |
|                  |      | web splices                       | 20       |     | 0.9                             | Light boit stilleried end plate  | , ,      |
|                  | 2.7  | Web cover plate components for    |          | 7   | BOI                             | TED COVER PLATE SPLICE           | 78       |
|                  |      | bolted splices                    | 22       | •   | 7.1                             | Description of connection        | 78       |
|                  |      | Solica opiloco                    |          |     | 7.2                             | Typical detailing of connection  | 79       |
| 3                | DESI | IGN BASIS                         | . 23     |     | 7.3                             | Calculation of design actions    | 82       |
| -                | 3.1  | Design models                     | 23       |     | 7.4                             | Recommended design model—        | 02       |
|                  | 3.2  | Minimum design actions on         |          |     | 7.4                             | Summary of design checks         | 83       |
|                  | 0    | connections                       | 24       |     | 7.5                             | Design capacity tables           | 84       |
|                  |      |                                   |          |     | 7.5                             | Design capacity tables           | 04       |
| 4                | WEL  | DED BEAM TO COLUMN MOMENT         | -        | 8   | BOL                             | TED/WELDED COVER PLATE           |          |
|                  | CON  | NECTION                           |          |     |                                 | ICE                              | 90       |
|                  | 4.1  | Description of connection         | 28       |     | 8.1                             | Description of connection        | 90       |
|                  | 4.2  | Typical detailing of connection   | 31       |     | 8.2                             | Typical detailing of connection  | 91       |
|                  | 4.3  | Calculation of design actions     | 33       |     | 8.3                             | Calculation of design actions    | 94       |
|                  | 4.4  | Recommended Design Model—         |          |     | 8.4                             | Recommended design model—        |          |
|                  |      | Summary of design checks          | 34       |     | • • •                           | Summary of design checks         | 95       |
|                  | 4.5  | Design capacity tables            | 35       |     | 8.5                             | Design capacity tables           | 96       |
|                  | 4.6  | Configuration A—Full penetration  |          |     | 0.0                             | Doolgii dapadity tabloo          | 00       |
|                  |      | butt welds to flanges and webs    | 36       | 9   | FUL                             | LY WELDED SPLICE                 | 102      |
|                  | 4.7  | Configuration B—Fillet welds      |          |     | 9.1                             | Description of connection        | 102      |
|                  |      | required to develop section       |          |     | 9.2                             | Typical detailing of connection  | 103      |
|                  |      | moment capacity                   | 38       |     | 9.3                             | Calculation of design actions    | 105      |
|                  | 4.8  | Configuration C—Fillet welds to   |          |     | 9.4                             | Recommended design model—        |          |
|                  |      | flanges and web                   | 40       |     | 0                               | Summary of design checks         | 106      |
|                  |      | nangoo ana wob                    |          |     | 9.5                             | Design capacity tables           | 107      |
| 5                | BOL  | TED MOMENT END PLATE BEAM         |          |     | 0.0                             | Design supasity tubies           | 107      |
|                  |      | SPLICE CONNECTION                 |          | 10  | REF                             | ERENCES                          | 110      |
| 5.1              |      | Description of connection         |          |     |                                 |                                  |          |
|                  | 5.2  | Typical detailing of connection   | 42<br>44 | ΑF  | PPEN                            |                                  |          |
|                  | 5.3  | Calculation of design actions     | 48       |     | Α                               | Rigid connections DCTs, V4       |          |
|                  | 5.4  | Recommended design model—         | . •      |     |                                 | comment form                     | 111      |
|                  | ٠.،  | Summary of design checks          | 49       |     |                                 |                                  |          |
|                  |      | ar y or accigir or looke          |          |     |                                 |                                  |          |





# LIST OF FIGURES

|            | Pa                                                                               | ge   |            | Pi                                                                          | age |
|------------|----------------------------------------------------------------------------------|------|------------|-----------------------------------------------------------------------------|-----|
| Figure 1   | Typical detailing for unstiffened variations of extended bolted moment end plate | 4    | _          | Shims used between end plates<br>Clearance required for<br>tensioning bolts |     |
| Figure 2   | Typical welded beam to column                                                    |      | Figure 27  | Design actions at connection                                                |     |
| Figure 3   | moment connection                                                                | . 4  |            | Bolted end plate to column moment connections                               |     |
|            | unstiffened bolted end plate to column connection                                | 5    | Figure 29  | Forms of extended end plate connection                                      |     |
| Figure 4   | Typical detailing of bolted cover plate splice                                   | . 6  | Figure 30  | Possible configurations of the bolted moment end plate                      |     |
| Figure 5   | Typical detailing of bolted/welded cover plate splice                            | 7    | Figure 21  | beam to column connection                                                   | 60  |
| Figure 6   | Typical detailing of welded splice                                               |      | rigule 31  | Typical detailing for 4 bolt unstiffened bolted end plate                   |     |
| Figure 7   | Bolting layouts for M24 bolts in                                                 |      |            | to column connection                                                        | 61  |
| Figure 8   | Bolting layouts for M20 bolts in                                                 |      | Figure 32  | Typical detailing for haunched rafter to column bolted end                  | 00  |
| F: 0       | bolted moment endplate                                                           | 11   | F: 00      | plate connection                                                            | 62  |
| Figure 9   | Transverse stiffener arrangement                                                 | 12   | Figure 33  | Removal of column flange with thicker plate inserted                        | 62  |
| Figure 10  | Geometry of flange splice plates                                                 |      | Figure 34  | Column doubler plate types                                                  |     |
| Figure 11  | Web splice bolting layout M20 bolts                                              | 20   | Figure 35  | Shims used between end plate and column flange                              | 64  |
| _          | Web splice bolting layout M24 bolts                                              |      | Figure 36  | Clearance required for tensioning bolts                                     | 65  |
|            | Web cover plate components                                                       | 22   | Figure 37  | Design actions on beam at column                                            | 66  |
| rigule 14  | Typical welded beam to column moment connection                                  | 28   | Figure 38  | Bolted cover plate splice                                                   |     |
| Figure 15  | Alternative arrangements for                                                     | 20   | -          | Typical detailing in flexural                                               |     |
| J          | welded beam to column                                                            |      | J          | member                                                                      | 79  |
|            | connections                                                                      | 29   | Figure 40  | Typical detailing in column/                                                |     |
| Figure 16  | Arrangement with shop welded                                                     | 20   | E: 44      | beam-column                                                                 | 80  |
| Figure 17  | beams and column splices Possible configurations of the                          | 29   | Figure 41  | Typical detailing in tension member                                         | 80  |
| riguic ir  | welded moment beam to                                                            |      | Figure 42  | Design actions at splice                                                    |     |
|            | column connection                                                                | 30   | _          | Bolted/welded cover plate                                                   |     |
| Figure 18  | Stub girder connection, fully                                                    |      | ga         | splice                                                                      | 90  |
|            | shop welded beam stub, beam spliced on site                                      | 31   | Figure 44  | Typical detailing in flexural                                               | 04  |
| Figure 19  | Field welded moment                                                              |      | Eiguro 45  | member                                                                      | 91  |
|            | connection—including                                                             |      | rigure 45  | Typical detailing in column/<br>beam column                                 | .92 |
|            | erection cleat                                                                   | 31   | Figure 46  | Typical detailing in tension                                                |     |
| Figure 20  | Design actions on beam                                                           | 22   | <b>J</b>   | member                                                                      | 92  |
| Eiguro 21  | at column  Bolted moment end plate beam                                          | 33   | Figure 47  | Design actions at splice                                                    | 94  |
| rigule 21  | splice connection                                                                | 42   | Figure 48  | Fully welded splice                                                         | 102 |
| Figure 22  | Forms of extended bolted                                                         |      | Figure 49  | Typical detailing of welded splice                                          | 103 |
|            | end plate connection                                                             | 43   | Figure 50  | Use of backing strips                                                       |     |
| Figure 23  | Typical detailing for unstiffened                                                |      | -          | Preferred splice location in                                                | 10- |
|            | variations of extended bolted moment end plate                                   | 44   | . 19410 01 | column                                                                      | 104 |
| Figure 24  | Typical detailing for stiffened                                                  | -1-7 | Figure 52  | Design actions at splice                                                    |     |
| . 19410 Z4 | variations of extended bolted                                                    |      |            | •                                                                           |     |
|            | moment end plate                                                                 | 45   |            |                                                                             |     |





# LIST OF TABLES

|                      | Page                                                                                                  |          | Page                                                                                                                           |
|----------------------|-------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|
| Table 1              | Connection components bolted moment end plate 10                                                      | Table 20 | Universal beams grade 300 design moment capacity of                                                                            |
| Table 2              | Stiffener material design strengths 12                                                                |          | welded connection with flange welds and web welds41                                                                            |
| Table 3              | Flat bar components as stiffeners 13                                                                  | Table 21 | Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt                                                          |
| Table 4              | Flat bar width/column combinations suited to stiffening 14                                            |          | unstiffened end plate M24 bolts<br>welded beam/universal beam<br>sections > 300 mm deep51                                      |
| Table 5              | Plate width/column combinations suited to stiffening 14                                               | Table 22 | Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt                                                          |
| Table 6              | Suitable bolt gauges for column section flanges                                                       |          | unstiffened end plate M20 bolts universal beam sections                                                                        |
| Table 7              | Flange cover plate width/ thickness combinations for one plate bolted cover plate splice 17           | Table 23 | > 200 mm deep52 Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt                                          |
| Table 8              | Flange cover plate width/ thickness combinations for one plate bolted/welded cover plate splice       |          | stiffened end plate M24 bolts<br>welded beam/universal beam<br>sections > 300 mm deep53                                        |
| Table 9              | Flange cover plate width/ thickness combinations for three plate bolted cover plate splice 18         | Table 24 | Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt stiffened end plate M20 bolts universal beam sections    |
| Table 10             | Flange cover plate width/ thickness combinations for three plate bolted/welded cover plate splice     | Table 25 | > 200 mm deep54  Design moment capacity of connection $\phi M_{\text{conn}}$ six bolt unstiffened end plate M24 bolts          |
| Table 11<br>Table 12 | Values of $n_{\text{max}}$ in web splice 20                                                           |          | welded beam/universal beam sections > 450 mm deep55                                                                            |
| Table 13             | Values of $n_{\text{max}}$ in web splice                                                              | Table 26 | Design moment capacity of connection $\phi M_{\text{conn}}$ six bolt unstiffened end plate M20 bolts                           |
| Table 14             | Welded beams, Grade 300 design section moment and                                                     | Table 27 | universal beam sections > 350 mm deep56                                                                                        |
| Table 15             | web capacities                                                                                        | Table 27 | connection $\phi M_{\text{conn}}$ eight bolt stiffened end plate M24 bolts 8.8/TB category threads                             |
| Table 16             | Welded beams Grade 300 design section moment and web capacities                                       |          | excluded from shear plane<br>welded beam and universal<br>beam sections > 520 mm deep57                                        |
| Table 17             | Universal beams Grade 300 weld configurations to achieve design section moment capacity $\phi M_s$    | Table 28 | connection $\phi M_{\rm conn}$ four bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam                 |
| Table 18             | Welded beams Grade 300 weld configurations to achieve design section moment capacity $\phi M_s$ 39    | Table 29 | sections > 300 mm deep69  Design moment capacity of                                                                            |
| Table 19             | Universal beams Grade 300 design moment capacity of welded connection with flange welds and web welds |          | connection $\phi M_{\text{conn}}$ four bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep70 |





Page Page

| Table 30  | Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt unstiffened end plate M24 bolts haunched universal beam                                                           | Table 40 | Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts88                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 31  | sections > 300 mm deep                                                                                                                                                                  | Table 41 | Design moment capacity of bolted three cover plate splice 900WB/1000WB welded beam sections M24 bolts89                                                                         |
| Table 32  | haunched universal beam<br>sections > 200 mm deep                                                                                                                                       | Table 42 | Design moment capacity of bolted/welded single cover plate splice universal beam sections                                                                                       |
| . 4516 62 | connection $\phi M_{\text{conn}}$ four bolt stiffened end plate M24 bolts unhaunched welded beam/universal                                                                              | T.I. 40  | < 400 deep M20 bolts, 6 fillets<br>to flange plates, 5 fillets to web<br>plates97                                                                                               |
| Table 33  | beam sections > 300 mm deep 73  Design moment capacity of connection $\phi M_{\text{conn}}$ four bolt stiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep 74 | Table 43 | Design moment capacity of bolted/welded single cover plate splice universal beam sections > 400 deep M24 bolts, 8 or 6 fillets to flange plates, 5 fillets to web plates98      |
| Table 34  | Design moment capacity of connection $\phi M_{\text{conn}}$ six bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 450 mm deep                       | Table 44 | Design moment capacity of bolted/welded three cover plate splice universal column sections M24 bolts, 6/8 fillets to flange plates and web plates and 6 fillets to web plates99 |
| Table 35  | Design moment capacity of connection $\phi M_{\text{conn}}$ six bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 350 mm deep                                   | Table 45 | Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts, 6/8 fillets to flange plates and 5 fillets to web plates                  |
| Table 36  | Design moment capacity of connection $\phi M_{\text{conn}}$ eight bolt stiffened end plate M24 bolts unhaunched welded beam and universal beam sections > 520 mm deep                   | Table 46 | Design moment capacity of bolted/welded three cover plate splice 900WB/1000WB welded beam sections M24 bolts, 8 or 6 fillets to flange plates and 6 fillets to web plates101    |
| Table 37  | Design moment capacity of bolted single cover plate splice universal beam sections < 400 deep M20 bolts                                                                                 | Table 47 |                                                                                                                                                                                 |
| Table 38  | Design moment capacity of bolted single cover plate splice universal beam sections > 400                                                                                                | Table 48 | Welded beams Grade 300 design section moment and shear capacities108                                                                                                            |
| Table 39  | deep M24 bolts                                                                                                                                                                          | Table 49 | Universal columns/welded columns grade 300 design section moment and shear capacities                                                                                           |



