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ABSTRACT 
 
A torsion differential equation previously used for analysing the elastic lateral buckling of simply 
supported doubly symmetric beams with distributed loads acting away from the centroidal axis omits 
an expected term and includes an unexpected term.  A different equation is derived by two different 
methods, either by using the calculus of variations with the second variation of the total potential, or 
by considering the equilibrium of the deflected and twisted beam. 
 
Four different methods are used to find solutions for the elastic buckling of beams with uniformly 
distributed loads.  Two of these solve the differential equations numerically, either by using a 
computer program based on the method of finite integrals, or by making hand calculations with a 
single term approximation of the buckled shape.  These methods produce different solutions for the 
two torsion differential equations. 
 
The two other methods used are based on the energy equation for lateral buckling.  The first of 
these uses hand calculations and a limited series for the buckled shape, while the second uses a 
finite element computer program based on cubic deformation fields.  Both of these produce 
solutions which agree closely with the finite integral and approximate solutions for the different 
differential equation derived in this paper, but are markedly different from the solutions for the 
previously used equation. 
 
It is concluded that the previously used torsion differential equation is in error. 
 
 
KEYWORDS 
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1. INTRODUCTION 
 
The differential equation for the variation of the twist rotation  along the z centroidal axis of a doubly 
symmetric beam loaded in the YZ principal plane is reported in [1] as being 
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in which E, G are the elastic moduli, Iy, J, and Iw are the second moment of area about the y axis, the 
torsion section constant, and the warping section constant, Vy and Mx are the internal shear and 
moment stress resultants, and yq is the distance below the centroidal axis at which a distributed load 
q acts.  For a simply supported beam under uniformly distributed load q (Fig. 1) 
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Equation 1 omits an expected term of the type qyq and includes an unexpected term Vy yq d /dz.  It 
is asserted that Equation 1 is incorrect.  The purpose of this paper is to show how the correct 
torsion differential equation can be derived and to compare its predictions with those of Equation 1. 
 
 
2. DERIVATION OF TORSION DIFFERENTIAL EQUATION 
 
2.1 Calculus of Variations 
 
The calculus of variations can be used to derive the torsion differential equation from the energy 
equation for lateral buckling.  The energy equation for doubly symmetric sections with distributed 
loads only is [2] 
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in which UT is the total potential, L is the length, u is the lateral displacement, and ‘  d/dz.  
According to the calculus of variations, the functions u,  which make 
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stationary satisfy the equations 
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This leads to [3] 
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For beams with end twist rotation prevented, the first of Equations 6 can be integrated to 
 

0"  xy MuEI          (7) 

 
Substituting this into the second of Equations 6 leads to 
 

0)/()''()""( 2   qyxw qyEIMGJEI       (8) 

 
This torsion differential equation includes the qyq term missing from Equation 1 and omits the 
unexpected dzdyV qy /  term.  Reference 1 includes an argument for the inclusion of this 

unexpected term based on the assumption that the internal shear Vy may be treated as a vertical 
external force that displaces laterally as the beam deflects and twists. 
 
 
2.2 Equilibrium of the Twisted Beam 
 
The torsion differential equation can also be obtained by considering the equilibrium of the applied 
loads in the buckled position shown in Fig. 2.  For overall equilibrium, the LH end reactions consist 

of a vertical force qL/2 and a torque  
L

q dzyuq
0

2/)(   about the fixed Z axis.  The global reactants 

of these and the distributed load q at a distance z from the LH end are Mx, Vy (=Mx’) and  
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acting about the fixed Z axis, and the torque resultant of these acting about the displaced and 
rotated z axis is 
 

uVuMMM yxZz  '          (10) 

 
This torque is resisted by the uniform torsion and the warping rigidities, so that 
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Differentiating this equation and using Mx” = -q leads to the uniform beam version of Equation 8. 
 
 
3. SOLUTIONS 
 
3.1 Solution by Finite Integrals 
 
Equations 1 and 8 may be solved numerically by the method of finite integrals [4, 5], as explained in 
the Appendix.  The data used for an example are E = 2E5 N/mm2, G = 76923 N/mm2, Iy = 2281E5 
mm4, J = 512E4 mm4, Iw = 64877E8 mm6, dw = 337.3 mm, and L = 5000 mm, in which dw = 2√(Iw/Iy) 
is the distance between flange centroids.  Finite integral solutions are given in Fig. 3 for the variation 
of the dimensionless elastic buckling moment Myq /M0 with the dimensionless load distance yqPy /Myz 
in which M0 is the value of Myq for yq = 0 and 
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3.2 Finite Element Solutions 
 
Finite element solutions for the dimensionless elastic buckling moments have been obtained by 
using the computer program PRFELB [2, 6, 7], and are shown in Fig. 3.  They are in very close 
agreement with the finite integral solutions of Equation 8, but differ markedly from the finite integral 
solutions of Equation 1. 
 
3.3 Timoshenko’s Solutions 
 
Timoshenko [8] determined approximate solutions for simply supported beams with uniformly 
distributed load by using 
 

LzaLz /3sin/sin  
       

 (13) 
 
in the energy equation (Equation 3) and minimising with respect to the undetermined parameter a.  
The solutions shown in Fig. 3 are in very close agreement with the finite integral solutions of 
Equation 8, but differ markedly from the finite integral solutions of Equation 1. 
 
3.4 Approximate Solutions 
 
Approximate solutions of the torsion equations may be made by substituting  = sin z/L and 
integrating each term over the beam length L.  Thus for Equation 1, 
 

 
L

yxqyw dzEIMyVGJEI
0

2 0})/('"""{        (14) 

 
leads to  
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which can be solved for values of (Myq /Myz) for given values of yqPy /Myz.  These solutions have been 
used to determine the values of Myq /M0 shown in Fig. 3.  These values are quite close to the finite 
integral solutions of Equation 1 shown in Fig. 3 but very different from the values obtained for 
Equation 8.  More accurate solutions could be obtained by using Equation 13 and finding the values 
of the parameter a which minimise the solutions, in much the same way as did Timoshenko [8] for 
his energy method solutions. 
 
Using the same method for Equation 8 leads to 
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The solutions of this have been used to determine the values of Myq /M0 shown in Fig. 3.  These 
values are reasonably close to the finite integral solutions of Equation 8 shown in Fig. 3, but very 
different from the values obtained for Equation 1.  The reason for this can be seen to be the change 
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of the value of 4 in Equation15 to 8 in Equation16, which suggests that Equation 1 underestimates 
the significance of the load distance yq by a factor of 2.  
 
 
4. CONCLUSIONS 
 
A torsion differential equation previously used [1] for analysing the elastic lateral buckling of simply 
supported doubly symmetric beams with distributed loads acting away from the centroidal axis omits 
an expected term and includes an unexpected term.  A different equation which includes the 
expected term and omits the unexpected term is derived in this paper by two different methods.  
The first method uses the calculus of variations with the second variation of the total potential, while 
the second method considers the equilibrium of the deflected and twisted beam. 
 
A number of different methods are used to find solutions for the elastic buckling of beams with 
uniformly distributed loads.  Two of these solve the torsion differential equations numerically.  The 
first method uses a computer program based on finite integrals [4, 5], while the second uses hand 
calculations with a single term approximation of the buckled shape.  These methods produce 
different solutions for the two torsion differential equations. 
 
Two other methods used are based on the energy equation for lateral buckling.  The first of these by 
Timoshenko [8] uses hand calculations and a limited series for the buckled shape, while the second 
uses a finite element computer program [6, 7] based on cubic deformation fields [2].  Both of these 
produce solutions which agree closely with the finite integral and approximate solutions for the 
different differential equation derived in this paper, but are markedly different from the solutions for 
the previously used equation. 
 
It is concluded that the previously used torsion differential equation is in error. 
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6. APPENDIX – FINITE INTEGRALS 
 
In the method of finite integrals [4, 5], a differential equation is replaced by a set of simultaneous 
equations which represent the differential equation at each of a number of points along a beam, as 
in the method of finite differences.  However, the unknowns in these equations are the highest order 
differential operators at the points, instead of the lowest order as in the method of finite differences.  
This allows the use of integration which is more accurate than differentiation, leading to faster 
convergence or more accurate solutions.  In addition, the boundary conditions are treated naturally 
using the constants of integration, and no fictitious points are required. 
 
The terms of Equation 1 may be represented by using 
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Boundary conditions of ()0 = 0 and (”)0 = 0 require A4 = A2 = 0.  Boundary conditions of ()L = 0 
and (”)L = 0 require 
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If the beam is divided into an even number n of equal intervals by n+1 nodes, then each continuous 
integral may be replaced by combinations of the values of the integrand at the nodes, such as 
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in which h = L/n is the interval length and [N] is the integration matrix 
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which is based on fitting a series of parabolas to the integrand. 
 
Thus Equation 1 is replaced by 
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In this equation, [I0] is a unit matrix and 
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in which [z1], [z2], and [z3] are diagonal matrices with the appropriate values of z, z2, and z3, and 
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in which {NNL}T and {NNNNL}T are the last lines of [N][N] and [N][N][N][N] respectively. 
 
Similar replacements are made for Equation 8. 
 
The elastic buckling loads may be determined by finding the values which satisfy  
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Because Equation A-6 is quadratic in the load, an iterative process will be required for this. 
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7. NOTATION 
 
a  Parameter in buckled shape 
A1-4  Constants of integration 
dw  Web depth 
E  Young’s modulus of elasticity 
F  Function 
G  Shear modulus of elasticity 
h  Interval = L / n 
Iy  Minor axis second moment of area 
Iw  Warping section constant 
[I1-4]  Finite integral matrices 
J  Uniform torsion section constant 
L  Length 
Mx  Bending moment 
Myq  Maximum moment at elastic buckling 
Myz  Uniform bending elastic buckling moment  
Mz  Torque about displaced z axis 
MZ  Moment about fixed Z axis 
M0  Value of Myq for yq = 0 
n  Number of intervals 
[N]   Integrating matrix 
{NNL}T Last line of [N][N] 
{NNNNL}T Last line of [N][N][N][N] 
Py  Column elastic buckling load 
q  Intensity of distributed load 
[T]  Total torsional stiffness matrix 
u  Lateral deflection 
UT  Total potential 
Vy  Shear 
x, y  Principal axes 
yq  Distance of load below centroidal axis 
z  Buckled centroidal axis 
Z Fixed centroidal axis 
[z1,2,3]  Diagonal matrices of values of z, z2, z3 
 Angle of twist rotation 
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Fig. 1  Simply Supported Beam 
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Fig. 2  Equilibrium of Buckled Beam 
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            Fig. 3  Solutions of Differential Equations 
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