CHAPTER 6: TESTING

6.1 GENERAL

Tests and results evaluations should comply with general requirements of AS/NZS 1170.0 Appendix B. Tests should be conducted by NATA registered laboratories. Alternatively, test results should be verified by NATA registered laboratories.

Steel units designed by calculation in accordance with relevant Australian Standards are not required to be tested. Proof and prototype tests may be accepted as an alternative to calculations or may become necessary where:

- More accurate information is required for use in structural design.
- Specific design parameters and methods are not included in relevant standards.
- The situation is sufficiently unusual to require that limit states be checked by methods other than calculation.
- There is a history of structural failures.
- Necessary design data is not available from product manufacturers (connectors, cladding, etc.).
- Designers are looking to support calculations or to provide more efficient designs.

The unit to be tested may be a structure, substructure, member, connection assembly or connection.

6.2 PROOF TESTING

Proof testing should comply with requirements of AS/NZS 1170.0 Appendix B2. This test method establishes the ability of the particular unit under test to satisfy the limit state that the test is designed to evaluate. Proof tests can be also used to evaluate structural models such as stressed skin diaphragms.

Additional requirements for time-dependent materials do not apply to steel structures used in sheds.

6.3 PROTOTYPE TESTING

This test method establishes the ability of a population of units to satisfy the limit state that the test is designed to evaluate. This method is not applicable to the testing of structural models, nor to the establishment of general design criteria or data.

Prototype testing should comply with requirements of AS/NZS 1170.0 Appendix B2 and AS/NZS 4600 Section 8.2.

Testing of sheet and wall cladding system shall be in accordance with AS/NZS 1562.1.

Stressed skin diaphragms could be tested using the test setup and test procedure as given in the following international Standards:

- BS 5950: Part 9:1994 Section 11
- EN 1993-1-3
- ASTM E455-04

Test results evaluation should be done in accordance with requirements of this Design Guide.

CONTENTS

TITLE	SUB-SECTION	PAGE
	ACKNOWLEDGEMENTS	3
	FOREWORD	4
CHAPTER 1	INTRODUCTION	7
SHED BASICS	WHAT IS A SHED	7
	NCC CLASSIFICATIONS	8
	IMPORTANCE LEVELS	9
	SCOPE	11
	MATERIALS AND PROCESSES	12
	STANDARDS AND REFERENCES	12
	DEFINITIONS	13
CHAPTER 2	WIND ACTIONS	14
ACTIONS	SNOW ACTIONS	21
	PERMANENT AND IMPOSED ACTIONS	24
	LIQUID PRESSURE ACTIONS	25
	ACTION COMBINATIONS	25
CHAPTER 3	3D ANALYSIS	27
ANALYSIS	TENSION ONLY	27
	PLASTIC ANALYSIS	27
	COLUMN BASE FIXITY	27
	TYPE OF ANALYSIS	27
CHAPTER 4	PRINCIPLES	29
DESIGN	SECTION AND MEMBER DESIGN	29
	DESIGN OF PURLIN AND GIRT SYSTEMS	34
	BRACING SYSTEMS	35
	SLABS AND FOOTINGS	38
	CLADDING	39
	DOORS, WINDOWS AND OPENINGS	40
	DESIGN PRINCIPLES FOR SERVICEABILITY	40
CHAPTER 5	GENERAL	42
CONNECTIONS	DESIGN BASIS	42

TITLE	SUB-SECTION	PAGE
	TYPICAL PRIMARY CONNECTIONS	42
	BOLTED CONNECTIONS	43
	SCREWS	44
	WELDING	44
	OTHER CONNECTION METHODS	44
CHAPTER 6	GENERAL	45
TESTING	PROOF TESTING	45
	PROTOTYPE TESTING	45
	TESTS RESULTS EVALUATION	46
	PRODUCT SUBSTITUTION	46
	CONNECTORS AND CONNECTIONS	46
CHAPTER 7	ANALYSIS SOFTWARE AND DESIGN AIDS	48
OTHER	GOOD DETAILING PRACTICE	48
CONSIDERATIONS	DURABILITY AND CORROSION	50
	FIRE	53
APPENDICES		
1	BUILDING CLASSIFICATIONS	55
2	IMPORTANCE LEVEL AND PRESSURE COEFFICIENT EXAMPLES	56
3	STRUCTURAL DESIGN CHECKLIST	57
4	PRO FORMA CERTIFICATE	63
5	WORKED EXAMPLES – DESIGN WIND SPEED	64

