CHAPTER 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS

4.1 Local Buckling

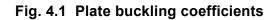
Local buckling involves flexural displacements of the plate elements, with the line junctions between plate elements remaining straight as shown in Figs 3.6, 3.7, 3.9 and 3.12. The elastic critical stress for local buckling has been extensively investigated and summarised by Timoshenko and Gere (Ref. 3.6), Bleich (Ref. 4.1), Bulson (Ref. 4.2) and Allen and Bulson (Ref. 4.3). The elastic critical stress for local buckling of a plate element in compression, bending or shear is given by

$$f_{cr} = \frac{k\pi^2 E}{I2(I-\nu^2)} \left(\frac{t}{b}\right)^2$$
(4.1)

where k is called the plate local buckling coefficient and depends upon the support conditions, and where (b/t) is the plate slenderness which is the plate width (b) divided by the plate thickness (t).

A summary of plate local buckling coefficients (k) with the corresponding half-wavelengths of the local buckles is shown in Fig. 4.1. For example, a plate with simply supported edges on all four sides and subjected to uniform compression will buckle at a half-wavelength equal to the plate width (b) with a plate buckling coefficient (k) of 4.0. A plate with one longitudinal edge free and the other simply supported will buckle at a half wavelength equal to the plate length (L) and if this is sufficiently long, the plate buckling coefficient will be 0.425. However, if the half-wavelength of the buckle is restricted to a length equal to twice its width (L = 2b) then the buckling coefficient will be approximately 0.675 as set out in Fig. 4.1.

For the unlipped channel shown in Fig. 3.2 and subjected to uniform compression, if each flange and the web are analysed in isolation by ignoring the rotational restraints provided by the adjacent elements, then the buckling coefficients are k = 0.425 for the flanges and k = 4.0 for the web. These produce buckling stresses of 336 MPa for the flanges at an infinite half-wavelength and 334 MPa for the web at a half-wavelength of 149 mm. A finite strip buckling analysis shows that the three elements buckle simultaneously at the same half-wavelength of approximately 160 mm at a compressive stress of 350 MPa. This stress is higher than either of the stresses for the isolated elements because of the changes required to make the half-wavelengths compatible.


For the lipped channel purlin shown in Fig. 3.11, the buckling coefficients for the web in bending, the flange in uniform compression, and the lip in near uniform compression are 23.9, 4.0 and 0.425 respectively. The corresponding buckling stresses are 440 MPa, 404 MPa and 985 MPa respectively. In this case, a finite strip buckling analysis shows that the three elements buckle at a stress and half-wavelength of 450 MPa and 90 mm respectively.

For both of the cases described above, a designer would not normally have access to an interaction buckling analysis and would use the lowest value of buckling stress in the cross-section considering the individual elements in isolation. Clause 2.2.1.2 of AS/NZS 4600 allows values of the local buckling coefficient (k) based on a rational elastic buckling analysis to be used in design.

Case	Boundary Conditions	Loading	Buckling Coefficient (k)	Half - Wavelength
1	S.S S.S S.S	Uniform Compression	4.0	b
2	S.S Built-in S.S Built-in	Uniform Compression	6.97	0.66b
3	S.S S.S Free S.S	Uniform Compression	0.425 0.675	$L = \infty$ $L = 2b$
4	S.S Built-in Free S.S	Uniform Compression	1.247	1.636b
5	S.S S.S S.S S.S S.S	Pure Bending	23.9	0.7b
6	S.S S.S S.S	Bending + Compression	7.81	b
7	S.S Free S.S S.S	Bending + Compression	0.57	$\Gamma = \infty$
8	S.S S.S S.S	Pure Shear	5.35 9.35	$\begin{array}{c} \Gamma = \infty \\ \Gamma = p \end{array}$

L = Plate length, b = Plate width

4.2 Postbuckling of Plate Elements in Compression

Local buckling does not normally result in failure of the section as does flexural (Euler) buckling in a column. A plate subjected to uniform compressive strain between rigid frictionless platens will deform after buckling as shown in Fig 4.2(a), and will redistribute the longitudinal membrane stresses from uniform compression to those shown in Fig. 4.2(b). This will occur irrespective of whether the plate is a stiffened or an unstiffened element. The plate element will continue to carry load although with a stiffness reduced to 40.8% of the initial linear elastic value for a square stiffened element and to 44.4% for a square unstiffened element (Ref. 4.2). However, the line of action of the compressive force in an unstiffened element will move towards the stiffened edge in the postbuckling range.

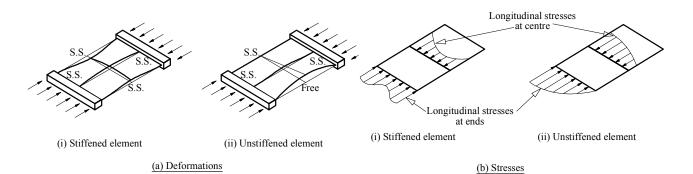


Fig. 4.2 Postbuckled plates

Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney

fourth edition - 2007

CONTENTS

	F	Page
PREFACE 1	TO THE 4 th EDITION	viii
CHAPTER 1	INTRODUCTION	1
1.1 De 1.1.1 1.1.2	esign Standards and Specifications for Cold-Formed Steel General	1 1
1.1.2	Specifications	1 2
1.2 Co	ommon Section Profiles and Applications of Cold-Formed Steel	4
1.3 Ma	anufacturing Processes	10
1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7	Distortional Buckling Cold Work of Forming Web Crippling under Bearing Connections Corrosion Protection Inelastic Reserve Capacity	12 12 13 14 15 15 16 16
1.5 Lo	ading Combinations	17
1.6 Lir	nit States Design	17
1.7 Co	omputer Analysis	19
1.8 Re	eferences	20
CHAPTER 2	2 MATERIALS AND COLD WORK OF FORMING	22
2.1 St	eel Standards	22
2.2 Ty	pical Stress-Strain Curves	23
2.3 Du	actility	25
2.4 Ef	fects of Cold Work on Structural Steels	29
2.5 Co	orner Properties of Cold-Formed Sections	30
2.6.1 E 2.6.2 M 2.6.3 E	acture Toughness Background Measurement of Critical Stress Intensity Factors Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens	32 32 32 34 35
2.7 Re	eferences	36
CHAPTER 3	BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING	37
3.1 Int	roduction to the Finite Strip Method	37
3.2 Mo 3.2.1 3.2.2 3.2.3	onosymmetric Column Study Unlipped Channel Lipped Channel Lipped Channel (Fixed Ended)	38 38 41 44
3.3.1	Irlin Section Study Channel Section Z-Section	45 45 46

	3.4 3.4.7 3.4.2		47 47 48
	3.5	References	49
CI	HAPTE	R 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS	50
	4.1	Local Buckling	50
	4.2	Postbuckling of Plate Elements in Compression	51
	4.3	Effective Width Formulae for Imperfect Elements in Pure Compression	52
	4.4 4.4.7 4.4.2		56 56 56
	4.5 4.5.2 4.5.2 4.5.3	2 Intermediate Stiffened Elements with One Intermediate Stiffener	57 57 58 58 58
	4.6 4.6.2 4.6.2 4.6.3	2 Hat Section in Bending with Intermediate Stiffener in Compression Flange	59 59 63 68
	4.7	References	75
CI	HAPTE	R 5 BEAMS, PURLINS AND BRACING	76
	5.1	General	76
	5.2 5.2.7 5.2.2 5.2.3	2 Continuous Beams and Braced Simply Supported Beams	77 77 81 85
	5.3 5.3.7 5.3.2	5 5	86 86 89
	5.4 5.4.2 5.4.2 5.4.3	2 Stability Considerations	89 89 92 94
	5.5 5.5.7 5.5.2 5.5.3	2 Lateral Restraint but No Torsional Restraint	95 95 95 96
	5.6	Bracing	98
	5.7 5.7.2 5.7.2	1 Sections with Flat Elements 1	01 01 02
	5.8 5.8.7 5.8.7 5.8.7 5.8.4	1Simply Supported C-Section Purlin12Distortional Buckling Stress for C-Section13Continuous Lapped Z-Section Purlin14Z-Section Purlin in Bending1	02 02 07 08 16
	5.5		~~

CHAPTE	R 6 WEBS	125
6.1	General	125
6.2	Webs in Shear	125
6.2. 6.2.	0	125 127
6.3	Webs in Bending	127
6.4	Webs in Combined Bending and Shear	129
6.5	Web Stiffeners	130
6.6	Web Crippling (Bearing) of Open Sections	130
6.6. 6.6.	1 Edge Loading Alone	130 133
6.7	Webs with Holes	134
6.8	Examples	136
6.8.	1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section	Purlin 136
6.8.	2 Combined Bearing and Bending of Hat Section	138
6.9	References	139
CHAPTE	R 7 COMPRESSION MEMBERS	141
7.1	General	141
7.2	Elastic Member Buckling	141
7.2. 7.2.	, 3	141 143
7.3	Section Capacity in Compression	143
7.4	Member Capacity in Compression	144
7.4. 7.4.:		144 146
7.5	Effect of Local Buckling	147
7.5.	1 Monosymmetric Sections	147
7.5.		149
7.6 7.6.	Examples 1 Square Hollow Section Column	151 151
7.6.2	2 Unlipped Channel Column	153
7.6.3	3 Lipped Channel Column	157
7.7	References	164
CHAPTE	R 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING	165
8.1	Combined Axial Compressive Load and Bending - General	165
8.2	Interaction Equations for Combined Axial Compressive Load and Bending	166
8.3 8.3. 8.3.		167 167 169
8.4	Combined Axial Tensile Load and Bending	170
8.5	Examples	171
8.5. 8.5		171 174
8.5. 8.5.		174 176
8.6	References	180

v V

CHAPTER 9 CONNECTIONS	182
9.1 Introduction to Welded Connections	182
 9.2 Fusion Welds 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading 9.2.3 Fillet Welds subject to Longitudinal Loading 9.2.4 Combined Longitudinal and Transverse Fillet Welds 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds 	184 184 185 186 186 187 190
9.3 Resistance Welds	190
9.4 Introduction to Bolted Connections	190
 9.5 Design Formulae and Failure Modes for Bolted Connections 9.5.1 Tearout Failure of Sheet (Type I) 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) 9.5.4 Shear Failure of Bolt (Type IV) 	192 193 193 194 196
9.6 Screw Fasteners and Blind Rivets	196
9.7 Rupture	200
9.8 Examples 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example	201 201 205
9.9 References	208
CHAPTER 10 DIRECT STRENGTH METHOD	209
10.1 Introduction	209
10.2 Elastic Buckling Solutions	209
 10.3 Strength Design Curves 10.3.1 Local Buckling 10.3.2 Flange-distortional buckling 10.3.3 Overall buckling 	210 210 212 213
10.4 Direct Strength Equations	213
10.5 Examples 10.5.1 Lipped Channel Column (Direct Strength Method) 10.5.2 Simply Supported C-Section Beam	215 215 216
10.6 References	218
CHAPTER 11 STEEL STORAGE RACKING	219
11.1 Introduction	219
11.2 Loads	220
 11.3 Methods of Structural Analysis 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order 11.3.3 Beams 	221 222 223 223
 11.4 Effects of Perforations (Slots) 11.4.1 Section Modulus of Net Section 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) 	224 224 225 225
11.5 Member Design Rules11.5.1 Flexural Design Curves11.5.2 Column Design Curves	225 225 226

vi

11.5.3 Distortional Buckling	227
11.6 Example	227
11.7 References	235
SUBJECT INDEX BY SECTION	236

