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ABSTRACT 
 
Buckling of thin-walled sections in pure shear has been recently investigated using the Semi-Analytical Finite 
Strip Method (SAFSM) to develop the “signature curve” for sections in shear. The method assumes that the 
buckle is part of an infinitely long section unrestrained against distortion at its ends.  For sections restrained 
at finite lengths by transverse stiffeners or other similar constraints, the Spline Finite Strip Method (SFSM) 
has been used to determine the elastic buckling loads in pure shear. These loads are higher than those from 
the SAFSM due to the constraints. 

The SFSM requires considerable computation to achieve the buckling loads due to the large numbers of 
degrees of freedom of the system. In the 1980’s, Anderson and Williams developed a shear buckling 
analysis for sections in shear where the ends are simply supported based on the exact finite strip method. 
The current report further develops the SAFSM buckling theory of YK Cheung for sections in pure shear 
accounting for simply supported ends using the methodology of Anderson and Williams. The theory is 
applied to the buckling of plates of increasing length and channel sections in pure shear also for increasing 
length. The method requires increasing numbers of series terms as the sections become longer. 
Convergence studies with strip subdivision and number of series terms is provided in the report. 

 
KEYWORDS 
 
Cold-formed channel sections; Simply supported ends; Shear buckling analysis; Finite strip method; Semi-
analytical finite strip method; Complex mathematics. 
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The strip nodal line flexural deformations in Fig. 1 are given in vector format by: 

 {δF} = (w1, θx1, w2, θx2)T (1) 

Similarly, the strip nodal line membrane deformations in Fig. 1 are given in vector format by: 

 {δM} = (u1, v1, u2, v2)T (2) 

In the finite strip method of Cheung (1968, 1976), longitudinal variations of displacement are described by 
harmonic functions and transverse variations are described by polynomial functions. 
 

PLATE BUCKLING DEFORMATIONS WITH SIMPLY SUPPORTED ENDS 

 
For the analysis of plates and sections with simply supported ends, the strip nodal line deformations are 
regrouped into those associated with variation according to the sine function, and those associated with 
variation according to the cosine function as {δs} = (v1, w1, θx1, v2, w2, θx2)T and {δc} = (u1, u2)T respectively. 
The deformations {δ} of a strip for μ series terms assuming simply supported ends can therefore be 
expressed by: 

 δ Re ∑ i δ
δ  X xµ  ∑

δ sin
L

δ cos
L

µ  (3) 

where       {δsm}T = (v1, w1, θx1, v2, w2, θx2)m
T and {δcm}T = (u1, u2)m

T 
 
and 

 X x cos
L

i sin
L

 (4) 

The symbol Re means the “real part”, m is the number of the series term, and the elements of {δsm} and {δcm} 
are real. The displacements in Equation 3 satisfy the simply supported boundary conditions. 
 

FORCES ALONG THE NODAL LINES 

 
There are N nodal lines corresponding to the intersection of strips both at plate junctions and within plates 
subdivided into strips. The forces at the nodal lines can be computed at a given load factor λE from the 
unrestrained stiffness and stability matrices for the mth series term derived in Hancock and Pham (2011 
2012) using: 

 F H δ     (5) 

where                     [Hm]  =  [Km] – λE [Gm] 
 
The stiffness matrix [Km] is real and the stability matrix [Gm] is real when the shear stresses shown in Fig. 2 
are zero but complex Hermitian when the shear stresses are non-zero. The load factor λE applies to the 
stresses shown for each strip as in Fig. 2. 
 
Equation 5 for the nth series term can be partitioned according to the sequence in Equation 3 so that: 
 

 F
i F  H H

H H
i δ
i δ  (6) 

The forces are out-of-phase with the displacements so that the multiple i on {Fc} and {δc} accounts for the 90 
degree phase difference between these two components when the shear is zero, so that [Hn] is real and 
symmetric for such cases. 
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STIFFNESS AND STABILITY MATRICES 

 
For equilibrium, the theorem of minimum total potential energy with respect to each of the elements {δm} is: 

 E 0 (10) 

The result is: 

 HR δ  ∑ Q δ 0    m 1, 2, … . , µµ  (11) 

where 

 Q  c HI c HI c HI c HI

c HI c HI c HI c HI  (12) 

The matrices [Hm
R] and [Qmn], and the vectors {δm}, {δn}, are real. 

 
In Equation 11, when the shear stress τ is zero, Qmn is zero and hence the individual series terms are 
uncoupled in m = 1, 2, .... , μ and each can be solved independently. Further, [Qmn] is the transpose of [Qnm] 
since [Hm

I] is Hermitian so that the resulting stiffness and stability matrices are symmetric. 
 
For example, when μ = 3 (3 series terms), the full stiffness and stability matrix derived from Equation 11 can 
be represented as follows: 

 H  
HR Q 0
Q HR Q

0 Q HR
 

HR Q 0
Q T HR Q

0 Q T HR
 (13) 

The matrix [H] has 4 * N * μ degrees of freedom.  If the rows and columns in the matrix [H] are organised so 
that each degree of freedom is taken over the μ series terms, then the half-bandwidth of the matrix is simply 
μ times the half-bandwidth of the problem with one series term. This speeds the computation of the 
eigenvalues and eigenvectors considerably. 
 

ASSEMBLY OF STIFFNESS AND STABILITY MATRICES 

 
The component flexural stiffness and stability matrices used to compute [Km] and [Gm] in Eq. 5 (and hence 
[Hm]) was derived in Hancock and Pham (2011, 2012) to be: 

 kF  λE gF  δF 0 (14) 

The flexural stiffness matrix [kFm] is real and the flexural stability matrix [gFm] is real if the shear stress τ is 
zero. However, the stability matrix [gFm] is complex Hermitian if the shear stress is non-zero. They are given 
for the mth series term in Appendix C. 
 
The component membrane stiffness and stability matrices used to compute [Km] and [Gm] in Eq. 5 were 
derived by Hancock and Pham (2011, 2012) to be: 

 kM  λE gM  δM 0 (15) 

The membrane stiffness matrix [kM] is real and the membrane stability matrix [gM] is real. They are given for 
the mth series term in Appendix D.  The term λE is the load factor.   
 
For folded plate assemblies including thin-walled sections such as channels, (14) and (15) must be 
transformed to a global co-ordinate system to assemble the stiffness [Km] and stability [Gm] matrices of the 
folded plate assembly or section for the mth series term. 
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It is clear that only [gF] has complex terms.  So only [H11n
I] and [H11m

I] in Equation 12 are non-zero.  Equation 
12 therefore simplifies to: 

 Q  c HI c HI 0
0 0

 (16) 

 

EIGENVALUE ROUTINES 

STURM SEQUENCE PROPERTY 

 
From the theory of equations (Turnbull, 1946), the leading principal minors of [C]-λ[I] (where [I] is a unit 
matrix) form a Sturm sequence. The leading principal minor of order r is given by det ([Cr] –λ[I]) where [Cr] is 
the leading principal sub-matrix of order r of [C]. The first term of the Sturm sequence is the leading principal 
minor of order r=0 and is defined to be unity. 
 
The number of eigenvalues greater than λ is equal to the number of agreements in sign between 
consecutive members of the Sturm sequence from r = 0 to r = n where n is the dimension of the matrix [C]. 
This property is very useful in isolating the range of λ in which a particular eigenvalue is located. The 
eigenvalue corresponding to a particular mode number can be isolated by bisection between values of λ 
which bound the eigenvalue. 
 

DIRECT COMPUTATION OF SIGN COUNT OF ([A] - λ [B]) 

 
Peters and Wilkinson (1969) have shown that the sign of det([Ar] – λ[Br]) is the same as that of det([Cr] – λ[I]).   
Consequently, it is possible to apply the Sturm sequence directly to ([A] - λ[B]) without the need to transform 
to the standard eigenvalue problem det([C] - λ[I]) = 0. 
 
For the finite strip buckling analysis given by (11), the [G] component of [H] is chosen as [A] and the [K] 
component of [H] is chosen as [B] so that the computed eigenvalues λ of ([A] - λ[B]) are the reciprocals of the 
load factors λE 
 

EIGENVECTOR CALCULATION 

 
Wilkinson (1958) has produced a method for computing the eigenvector {δ} of (11) by solving the equations 
at the value of λE for a unit right hand side vector {1} replacing {0} in (11). The process is usually repeated 
once to purify the eigenvector with the unit vector {1} replaced by {δ} from the first iteration. This method has 
been used in the calculations in this report.   
 

COMPUTER PROGRAM bfinst8.cpp 

 
A computer program bfinst8.cpp has been written in Visual Studio C++ to assemble the stiffness and 
stability matrices given by Equation 11 and to solve for the eigenvalues using the Sturm sequence property 
described in the Sections above, and to compute the corresponding eigenvectors as per the Section above. 
The program stores the real [K] matrix and the real [G] and complex [GI] components of the stability matrices 
in order to extract the eigenvalues and eigenvectors. The results from this analysis are given the notation 
reSAFSM (restrained SAFSM) in this report to distinguish it from the unrestrained SAFSM in Hancock and 
Pham (2011, 2012). 
 

SOLUTIONS TO PLATES AND SECTIONS IN SHEAR 

PLATE SIMPLY SUPPORTED ON BOTH LONGITUDINAL EDGES 
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The solution for a plate simply supported along both longitudinal edges determined using the reSAFSM 
analysis is compared with the classical solution of Timoshenko and Gere (1961) Item 9.7 Buckling of 
rectangular plates under the action of shearing stresses. The equation for the elastic buckling of a 
rectangular plate is given (Timoshenko and Gere (1961)) as: 

 τ   D
 

 (17) 

where D is the plate flexural rigidity, b is the width of the plate which may consist of multiple strips and kv is 
the plate buckling coefficient in shear. 
 
The analysis is carried out for 8 equal width strips and an increasing number of series terms. Aspect ratios of 
1:1, 2:1, 3:1 and 4:1 have been investigated and the solutions for the buckling coefficient kv are compared in 
Table 1 with those of Timoshenko and Gere Table 9-10. It is clear that the solutions become more accurate 
with increasing numbers of series terms, and that more terms are required for higher aspect ratios. The 
solutions converge to values slightly lower than those of Timoshenko and Gere (1961) presumably because 
they used less series terms. These kv values can be compared with that for a buckle in an infinitely long 
section of 5.3385 given in Plank and Wittrick (1974) and Hancock and Pham (2011, 2012). Anderson and 
Williams (1985) achieved values of 9.37, 9.35 and 9.32 for 6 strips and 3, 4 and 6 series terms respectively 
using the exact strip formulation for a square plate simply supported along all four longitudinal edges. 
 

Aspect ratio Timoshenko and 
Gere (1961) 

3 series terms 4 series terms 6 series terms 

1:1 9.34 9.379 9.366 9.332 
2:1 6.6 6.691 6.564 6.551 
3:1 5.9 6.644 5.898 5.849 
4:1 5.7 7.219 6.029 5.645 

 
Table 1  Buckling coefficients kv for simply supported square and rectangular plates 

 
The buckling modes for an aspect ratio of 2:1 and 6 series terms determined from bfinst8.cpp are plotted as 
a contour plot using Mathcad in Fig. 3. The buckling mode has one elongated local buckle of the web 
satisfying the simply supported boundary conditions on all four edges. The contour line finishing at the 
centres of the ends is the zero displacement contour. 
 
 

 

Figure 3. Shear Buckling Mode of Plate of Aspect Ratio 2:1  
with Four Edges Simply Supported (6 Series Terms) 
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LIPPED CHANNEL SECTION IN PURE SHEAR 

In order to extend the study to lipped channel sections, a 200mm deep lipped channel with flange width 
80mm, lip length 20mm and thickness 2mm as studied by Pham and Hancock (2009a, 2012b) has been 
used. These dimensions are all centreline and not overall. In Pham and Hancock (2009a), three different 
shear stress distributions have been investigated. These are uniform shear in the web alone (called Cases 
A/B), uniform shear in the web and flanges (called Case C), and a shear stress equivalent to a shear flow as 
occurs in a channel section under a shear force parallel with the web through the shear centre (Case D as 
shown in Fig. 4). In this report, only Case D is studied as it is the most representative of practice. The shear 
flow distribution is not in equilibrium longitudinally as this can only be achieved by way of a moment gradient 
in the section. However, it has been used in these studies to isolate the shear from the bending for the 
purpose of identifying pure shear buckling loads and modes. The finite strip buckling analysis allows the 
uniform shear stresses in each strip, as shown in Fig. 2, to be used to assemble the stability matrix [kg] of 
each strip then the system stability matrix [G]. Fig. 4 demonstrates that the shear flow in each strip is 
uniform. In the studies of plain channels in this report, the web is divided into sixteen equal width strips, the 
flanges into ten each and the lips into two each making 40 strips and 41 nodal line with a total of 164 
degrees of freedom. Adequate accuracy can be achieved for engineering purposes with 18 strips, 19 nodal 
lines and 76 degrees of freedom. However, 40 strips have been used in this case for accurate benchmarking 
against the SFSM analyses. 
 

 

Figure 4. Shear Flow Distribution Assumed (Case D) 

The SAFSM and reSAFSM curves of buckling stress versus half-wavelength/length are compared in Fig. 5. 
The reSAFSM graph (circles) of buckling stress versus length (as opposed to half-wavelength for the 
SAFSM) was computed using the bfinst8.cpp program described above with 8 series terms. The reSAFSM 
analysis assumes no cross-section distortion at both ends of the section under analysis (Z = 0, L). For a 
section of length 200mm, the reSAFSM analysis gives a buckling coefficient kv of 10.017 for the web which is 
higher than that for a square panel in shear at 9.34 due to the flange restraint. The buckling mode is shown 
in Fig. 6 and encompasses a single buckle half-wavelength. At L = 600mm, 1000mm and 1600mm, the 
buckling modes are shown in Fig. 7, 8 and 9 respectively and involve 3, 5 and 6 local buckle half-waves 
respectively. At L = 2000mm, the buckling mode involves one half-wavelength and is a type of distortional 
buckle and is shown in Fig. 10. 
 
For comparison, the SAFSM graph (squares) of buckling stress versus buckle half-wavelength (signature 
curve) derived in Hancock and Pham (2011, 2012) using the program bfinst7.cpp is also shown in Fig. 5 for 
the lipped channel for a range of buckle half-wavelengths from 30mm to 10000mm. The graph reaches a 
minimum at approximately 200mm half-wavelength then rises and starts to drop at about 800mm. The 
buckling coefficient kv corresponding to the minimum point is 6.583 based on the average stress in the web 
(τav = V/Aw) computed from the shear load V on the section divided by the area of the web Aw. This compares 
with an asymptotic value of 6.60 for multiple local buckles using the reSAFSM analysis.  
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Figure 5. Buckling Stress versus Length/Half-Wavelength from SAFSM (bfinst7.cpp) and  
reSAFSM (bfinst8.cpp) for Simple Lipped Channel 

 

Figure 6. Simple Lipped Channel Shear Buckling Mode at L = 200mm 

 
 

Figure 7. Simple Lipped Channel Shear Buckling Mode at L = 600mm 
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Figure 8. Simple Lipped Channel Shear Buckling Mode at L = 1000mm 

 

Figure 9. Simple Lipped Channel Shear Buckling Mode at L = 1600mm 

 

 

Figure 10. Simple Lipped Channel Shear Buckling Mode at L = 2000mm 
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To validate the accuracy of the reSAFSM analysis, the buckling stresses and coefficients are compared in 
Appendix A with the Spline Finite Strip Method (SFSM) reported in Pham and Hancock (2009a, 2012b). The 
SFSM values have also been computed for a section with the same strip subdivision of 40 strips and can be 
regarded as an accurate solution for benchmarking. They were given previously in Hancock and Pham 
(2011, 2012). In general, the reSAFSM values are higher than the SFSM values by less than 1%.  However, 
at L=1600mm, the error increases to approximately 4% as the use of only 8 series terms does not accurately 
predict the behaviour when at least 6 buckle half-waves occur as shown in Fig. 9. 
 

WEB-STIFFENED CHANNEL IN PURE SHEAR  

 
Shear buckling of thin-walled channel sections with intermediate web stiffeners have been studied using the 
SFSM by Pham and Hancock (2009b) and using the SAFSM by Hancock and Pham (2011, 2012) and Pham 
SH, Pham CH and Hancock (2012a, 2012b). In this report, the particular web stiffener used is the same as 
that in Hancock and Pham (2011, 2012) and has a rectangular indent of 5mm over a depth of 80mm located 
symmetrically about the centre of the web. Swage stiffeners of this type are common in practice. The web is 
divided into 6 equal width strips for each of the 2 outer vertical elements in the web, 8 for the inner vertical 
element of the web, the stiffeners in the web into 2 each, the flanges into 6 each and the lips into two each 
making 40 strips and 41 nodal line with a total of 164 degrees of freedom, the same number as for the 
simple lipped channel. 
 
The SAFSM and reSFSM curves of buckling stress versus half-wavelength/length are compared in Fig.11. 
The effect of the different end conditions (Z = 0,L) between the SAFSM  (squares) and reSAFSM (circles) 
are clear from this comparison. The shape of the two curves is remarkably similar except that the SFSM 
shows several plateau points at approximately 200mm and 1000mm lengths corresponding to the switch in 
buckling modes. The differences in the modes at these switch points are shown in Figs. 12, 13 and 14. 
 
 

 
 

Figure 11. Buckling Stress versus Length/Half-Wavelength from SAFSM (bfinst7.cpp) and  
reSAFSM (bfinst8.cpp) for Stiffened web Channel 

 

0

200

400

600

800

1000

10 100 1000 10000

M
ax

im
um

 S
tre

ss
 in

 S
ec

tio
n 

at
 B

uc
kl

in
g 

(M
P

a)

Buckle Half-Wavelength/Length (mm)

reSAFSM (bfinst8.cpp)

SAFSM (bfinst7.cpp)



Shear Buckling of Channel Sections with Simply Supported Ends  
using the Semi-Analytical Finite Strip Method 

School of Civil Engineering Research Report R931 Page 15 
The University of Sydney 

 

Figure 12. Stiffened web channel shear buckling mode at L = 200mm 

 

Figure 13. Stiffened web channel shear buckling mode at L = 600mm 

 

Figure 14. Stiffened web channel shear buckling mode at L = 1000mm 

 

Figure 15. Stiffened web channel shear buckling mode at L = 1600mm 
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It is interesting to observe that the stiffened web channel has only two buckle half-waves at a length of 
1000mm compared with five for the plain channel. The effect of the stiffener is to decrease the number of 
buckle half-waves with a corresponding increase in the buckling stress. 
 
To validate the accuracy of the reSAFSM analysis for the web stiffened channel, the buckling stresses and 
coefficients are compared in Appendix B with the Spline Finite Strip Method (SFSM) reported in Hancock 
and Pham (2011). The SFSM values have also been computed for a section with 40 strips and can be 
regarded as an accurate solution for benchmarking. In general, the reSAFSM values are higher than the 
SFSM values by less than 1% for lengths greater than 600mm.  At shorter lengths, the error is slightly higher 
decreasing from 3.8% at 100mm to 1.8% at 200mm for the mode shown in Fig. 12 then falling rapidly to 
0.5% at 400mm. 
 

CONCLUSIONS 

A new version of the semi-analytical finite strip buckling analysis of thin-flat-walled structures under 
combined loading with simply supported end conditions has been derived and programmed in Visual Studio 
C++. The method has been called reSAFSM to reflect the restrained ends.  The method uses multiple series 
terms to allow for the increasing numbers of buckle half-waves as the sections become longer. The method 
includes the extraction of the eigenvalues and eigenvectors from the matrices produced when thin-walled 
sections are subjected to shear in addition to compression and bending.  The method is based on the theory 
of Anderson and Williams applied to the general complex matrices developed by Plank and Wittrick. The 
method using up to 6 series terms has been checked against the solutions of Timoshenko and Gere for 
simply supported rectangular plate in pure shear and found to produce accurate results. The solutions are 
slightly more accurate than Timoshenko and Gere as more series terms have been used. 
 
The buckling stress versus length curve for a plain lipped channel in pure shear has been produced using 
the reSAFSM with 8 series terms and compared with the signature curve from semi-analytical finte strip 
method with unrestrained ends (SAFSM). The reSFSM curve has also been compared with the spline finite 
strip buckling analysis (SFSM) where the ends are fixed against distortion. For the subdivision of the section 
into 40 strips, the method is accurate to generally better than 1% except in the at L=1600mm where an error 
of 4% occurs and more series terms would be required at this length before the mode switches to a single 
distortional buckle at longer half-wavelengths. 
 
The buckling stress versus length for a web-stiffened lipped channel with a 5mm swage stiffener has also 
been investigated. The modes have changed significantly from those of the simple lipped channel.  
Accuracies generally better than 1% have been achieved compared with the SFSM analysis except at 
lengths less than 200mm where an error of 1.8% occurs. 
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APPENDIX A: BUCKLING STRESS AND SHEAR BUCKLING COEFFICIENT FOR  
PLAIN LIPPED CHANNEL 

 

Table A. Buckling Stress and Buckling Coefficient for Plain Lipped Channel 

Length 
(mm) 

reSAFSM (8 terms) SFSM 

Buckling Stress 
(MPa) 

Shear Buckling 
Coefficient 

kv 

Buckling Stress 
(MPa) 

Shear Buckling 
Coefficient 

kv 

30 
40 
50 
60 
70 
80 
90 

100 
120 
140 
160 
180 
200 
230 
270 
300 
350 
400 
500 
600 
700 
800 
900 

1000 
1200 
1400 
1600 
1800 
2000 
2300 
2700 
3000 
3500 
4000 
5000 
6000 
7000 
8000 
9000 
10000 

3973.952 
2281.488 
1493.687 
1062.087 
801.930 
639.272 
523.503 
434.828 
322.269 
258.758 
220.704 
196.747 
181.059 
166.424 
155.543 
150.447 
139.202 
132.450 
126.762 
124.451 
122.526 
121.494 
120.552 
120.165 
119.323 
120.070 
122.499 
112.839 
100.604 
85.460 
70.262 
61.466 
49.989 
41.132 
28.260 
19.666 
13.830 
9.512 
6.823 
5.059 

219.847 
126.216 
82.834 
58.757 
44.364 
35.366 
28.961 
24.056 
17.829 
14.315 
12.210 
10.884 
10.017 
9.207 
8.605 
8.323 
7.701 
7.327 
7.013 
6.885 
6.778 
6.721 
6.669 
6.648 
6.601 
6.642 
6.777 
6.242 
5.566 
4.728 
3.887 
3.400 
2.765 
2.276 
1.563 
1.088 
0.765 
0.526 
0.377 
0.280 

3735.470 
2188.912 
1451.298 
1039.176 
786.997 
628.730 
516.653 
429.473 
318.626 
256.026 
218.510 
194.899 
179.450 
165.063 
154.413 
149.455 
138.477 
131.794 
126.202 
123.833 
121.996 
120.920 
119.980 
119.440 
118.620 
118.111 
117.770 
111.764 
99.588 
84.609 
69.605 
60.914 
49.561 
40.795 
28.049 
19.536 
13.786 
9.484 
6.805 
5.056 

206.651 
121.094 
80.288 
57.489 
43.538 
34.782 
28.582 
23.759 
17.627 
14.164 
12.088 
10.782 
9.927 
9.132 
8.542 
8.268 
7.661 
7.291 
6.982 
6.851 
6.749 
6.689 
6.637 
6.608 
6.562 
6.534 
6.515 
6.183 
5.509 
4.681 
3.851 
3.370 
2.742 
2.257 
1.552 
1.081 
0.763 
0.525 
0.376 
0.280 
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APPENDIX B: BUCKLING STRESS AND SHEAR BUCKLING COEFFICIENT FOR  
STIFFENED WEB CHANNEL 

 

Table B. Buckling Stress and Buckling Coefficient for Stiffened Web Channel 

Half-Wavelength/ 
Length 
(mm) 

reSAFSM (8 terms) SFSM 

Buckling Stress 
(MPa) 

Shear Buckling 
Coefficient 

kv 

Buckling Stress 
(MPa) 

Shear Buckling 
Coefficient 

kv 

30 
40 
50 
60 
70 
80 
90 

100 
120 
140 
160 
180 
200 
230 
270 
300 
350 
400 
500 
600 
700 
800 
900 

1000 
1200 
1400 
1600 
1800 
2000 
2300 
2700 
3000 
3500 
4000 
5000 
6000 
7000 
8000 
9000 
10000 

4255.165 
2583.108 
1804.562 
1422.517 
1212.321 
1058.671 
894.272 
775.562 
624.469 
539.751 
490.584 
461.497 
444.027 
429.122 
375.225 
341.310 
301.747 
276.622 
251.326 
241.917 
236.144 
217.576 
203.801 
192.627 
172.487 
152.111 
132.635 
115.757 
101.839 
85.587 
69.865 
60.935 
49.419 
40.618 
27.918 
19.464 
13.751 
9.461 
6.788 
5.044 

235.404 
142.902 
99.832 
78.696 
67.068 
58.568 
49.473 
42.906 
34.547 
29.860 
27.140 
25.531 
24.564 
23.740 
20.758 
18.882 
16.693 
15.303 
13.904 
13.383 
13.064 
12.037 
11.275 
10.657 
9.542 
8.415 
7.338 
6.404 
5.634 
4.735 
3.865 
3.371 
2.734 
2.247 
1.544 
1.077 
0.761 
0.523 
0.376 
0.279 

3963.104 
2469.557 
1737.175 
1374.149 
1173.947 
1033.547 
874.267 
758.890 
611.755 
529.189 
481.298 
453.027 
436.119 
421.860 
369.918 
336.908 
298.380 
273.891 
249.221 
240.095 
234.431 
216.227 
202.662 
191.610 
171.589 
151.281 
131.884 
115.098 
101.267 
85.120 
69.493 
60.610 
49.148 
40.386 
27.747 
19.339 
13.706 
9.430 
6.766 
5.027 

219.244 
136.619 
96.103 
76.020 
64.944 
57.177 
48.366 
41.983 
33.843 
29.275 
26.626 
25.062 
24.127 
23.338 
20.464 
18.638 
16.507 
15.152 
13.787 
13.282 
12.969 
11.962 
11.212 
10.600 
9.493 
8.369 
7.296 
6.367 
5.602 
4.709 
3.844 
3.353 
2.719 
2.234 
1.535 
1.070 
0.758 
0.522 
0.374 
0.278 
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APPENDIX C: FLEXURAL STIFFNESS AND STABILITY MATRICES FOR MTH SERIES TERM 
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The stresses σ1, σ2, σT and τ are shown in Fig. 2  
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APPENDIX D: MEMBRANE STIFFNESS AND STABILITY MATRICES FOR MTH SERIES TERM 
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