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ABSTRACT 
 
A formwork for determining a system resistance factor in LRFD is presented. A truss composed of HSS 
members based on current design specifications is chosen for analysis. 
 
To reflect real structures, the truss system is analyzed by advanced second order analysis, which takes into 
account the variation in physical properties and directly models geometric and material nonlinear behavior. 
Measured data on the variation of physical properties reported in literature is located including member 
imperfections, residual stresses, member thickness, Young’s modulus and yield stress. Distributions of these 
values are obtained from data for recreation in the finite element models. Member imperfection profiles are 
generated and residual stress patterns through the thickness and around the cross-section are formulated. 
The variations of physical properties are represented in the finite element simulations using Latin Hypercube 
sampling of the random variables. Random loads are also modeled. 
  
A connection modeling technique is devised, and finite element models of the structure are created and 
compared to benchmark tests to assess their validity. A 2D model of a single truss and a 3D model of a 
system of trusses are created. Simulations are completed to obtain strength distributions of each system, 
followed by a reliability analysis to determine resistance factors for each system. The results of the system 
analysis and resulting reliability index and system resistance factors are compared to that of component 
based design. It is found that the system resistance factor for the specific system analyzed herein is lower 
than that of the resistance factor for individual components.  
 
 

KEYWORDS 
 
Hollow structural sections, cold-formed steel, residual stresses, geometric imperfections, system reliability, 
finite element modeling 
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1 INTRODUCTION 
 
Hollow structural sections are typically cold-formed, seam welded, and rolled into the desired cross-sectional 
shape. Compared to open sections, HSS are more efficient in resistance to compression, torsion, and multi-
axis bending, leading to lower-weight designs. Being closed, the area needed to be covered by paint is 
reduced, thereby extending corrosion protection. Architects tend to choose hollow sections for their aesthetic 
appeal. Common applications include pedestrian bridges, frame systems, and roof trusses for large buildings 
such as storage buildings, exhibition and fair halls, and stadiums (Wardenier et al., 2010). A common 
frame/truss system was chosen for analysis herein. 
 
The current steel design process consists of two steps, an analysis to determine internal actions such as 
forces and moments, and a design check for adequate strength, for all individual members and connections. 
Component-based design is a simplistic process that could be improved to increase efficiency and economy. 
Advanced analysis completes the analysis and design check in a single step, thereby saving time in the 
design process. Additionally, advanced analysis directly models factors affecting the structure, such as 
geometric imperfections and residual stresses, enabling the user to accurately model the structure. 
Component-based design does not consider the system’s ability to redistribute loads, and thus in systems 
where this is possible the true load carrying capacity is greater than predicted.  
 
The current design code uses load and resistance factors to meet a specified level of reliability for each 
component. As system behavior is different than that of an individual component, the system reliability is not 
the same as the component reliability. Thus a system resistance factor must be determined in order for the 
system to meet a target reliability index. Enforcing a system reliability will create an economical system which 
is designed for a specified probability of failure.  
 
This was part of a larger project currently in progress at the University of Sydney to study system-based 
reliability of frames using advanced second order advanced analysis. The study includes frames composed of 
hot-rolled steel, cold-formed steel, and their joints. 
 
The work encompassed in this research report was completed as a requirement for the first author’s Master’s 
thesis (Blum, 2012) at the Johns Hopkins University. 
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2  PROPERTY AND MEMBER VARIATIONS 
 

2.1    THICKNESS 
 
Variability of thickness affects the strength of a member as it directly changes the cross sectional area 
available to resist internal forces due to loading. For this project, it was assumed that each member had a 
uniform thickness along its length for each of the four sides, but that the value of thickness relative to the 
nominal was random.  
 
The variability of thickness in HSS members was obtained through recently collected data for a report to AISC 
which characterized dimensional variability in HSS members produced in the US (Christopher M. Foley, 
personal communication, February 7, 2011). This report contains data on the variation of several dimensional 
measurements, however only thickness data was utilized in this project. Samples were obtained from three 
HSS manufactures in the US for 6 typical cross sections, ranging in size from 12”x6” to 3”x3” and thicknesses 
from 5/8” to 3/16”. There were a total of 28 samples measured and sample lengths ranged from 11 to 13 
inches. Thickness measurements were taken at 16 locations around the cross section: 3 along each face and 
1 at each corner at 1 inch from both ends of each specimen. 
 
The thickness measured at each of the 32 locations along the samples was divided by the nominal thickness 
of the sample. A histogram of the 896 data points of actual thickness relative to nominal was created (Figure 
2-1). The data has a mean of 0.964 actual to nominal, a standard deviation 0.039, and is represented by a 
normal distribution. 
 

 
 

Figure 2-1: Histogram and normal PDF fit of HSS wall thickness 
 

 

2.2    YOUNG’S MODULUS AND YIELD STRESS 
 
Material properties such as Young’s modulus, E, and yield stress, Fy, affect the strength of structural 
members by varying at which stress they begin to experience plastic deformations and at which strain this 
occurs.  
 
Galambos and Ravindra’s data on material properties used in LRFD criteria given in the September 1978 
Journal of the Structural Division is widely used today. In lieu of current measurement data on the variation of 
Young’s modulus and yield stress, their data was utilized. The nominal values of Young’s modulus and yield 
stress utilized in the simulations, as well as their mean to nominal ratio and COV are given in the table below. 
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Table 2-1: Values of E and Fy in models 

 Nominal (GPa) Mean / nominal COV 

E 200 1.0 0.06 

Fy 0.35 1.1 0.1 

 
 

2.3     IMPLEMENTATION IN MODELS 
 
Latin hypercube sampling was employed to reproduce values of thickness, Young’s modulus, and yield stress 
for chord and web members for all simulations. In the 2D models, all chord members were correlated, and all 
web members were correlated. This reflects how chord members and web members come from the same 
batch and have similar properties. Additionally, if all n members were uncorrelated, the variability would be 
much smaller than a single member’s variability as shown below (Eq. 2.1) where V is the coefficient of 
variation. 
 

 

member
system

V
V

n


 (2.1) 
 
Correlating some members produced a system variability between that of a single member and that of a fully 
uncorrelated system. 
 
In the 3D models, all chord members in a truss were correlated and all web members in a truss were 
correlated, however the members were not correlated between trusses. Thus the 3D model was a system of 
independent trusses, and system behavior was observed through the simulations of systems of independent 
trusses.  
 
 

3 GEOMETRIC IMPERFECTIONS 
 
Structural members are not perfectly straight. Manufacturing processes introduce geometric imperfections 
which most often reduce the strength of members. It is important to model geometric imperfections as they 
heavily influence the behavior, strength, and stability in non-linear analyses. While there are several common 
methods utilized to account for the effects of geometric imperfections, for this project initial member 
imperfections were directly modeled in the finite element simulations by offsetting nodes from their original 
positions. As all members utilized were compact, effects due to local imperfections were insignificant and 
were ignored. 
 

3.1    DATA 
 
Geometric imperfection data collected consisted of three sets, one from the Milan University of Technology 
(Politecnico, 1966) and two from the University of Sydney: Wilkinson (1997) and Key (1988). Data collected 
was used to calculate the member imperfection.  
 
The data from Milan University of Technology consisted of ten 6-foot (1,829.5 mm) square hollow sections 
measured prior to column testing. Bow-out imperfections were measured at the ends, middle, and quarter 
points along two adjacent faces to account for member imperfections along both axes. Effects of self-weight 
on the members were not apparent in the reported data. Data was analyzed to determine imperfection profiles 
relative to the ends of each member. 
 
Data from Wilkinson, University of Sydney, 1997 consisted of 29 6-foot (2 m) rectangular hollow sections; 
however measurements were only taken from the middle 2 feet (0.6 m) or 1 foot (0.3 m) of each member. 
Eight readings, 2 at each face just inside the corners, were taken around the cross section at 1 inch (25 mm) 
intervals for two separate runs. The average of the two runs for each measurement was utilized. Data was 
analyzed to determine the member imperfection along both axes and to eliminate the effects of self-weight, 
and determine imperfection profiles relative to the ends of each member. 
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Data from Key, University of Sydney, 1988 consisted of six square hollow sections, varying in length from 8.9 
feet (2717 mm) to 23.6 feet (7190 mm). Imperfection profiles relative to the ends were given about both axes 
for all specimens, with measurements at various intervals along the length of the member. The effects of self-
weight were not apparent in the reported data. 
 
 

3.2    MODELING 
 
 
Geometric imperfections were modeled as a linear superposition of the first three eigen buckling modes 
(n=1,2,3): 
 

 
 

L
xnsin

 (3.1) 
 
where L is the length of the member and x is the location along the length of the member. Scale factors, δ1, 
δ2, and δ3, represent the contribution of each mode (1

st
, 2

nd
, and 3

rd
, respectively) to the overall imperfection 

shape, which was normalized to a maximum value of 1 (Figure 3-1). 
 

 
Figure 3-1: Eigen buckling mode shapes for 1

st
, 2

nd
, and 3

rd
 mode 

 
 
For the data from the Milan University of Technology, imperfections at the quarter points and midpoint were 
known, so the following set of equations were solved to determine δ1, δ2, and δ3 for imperfection profiles about 
both axes of each member: 
 

 
     

4
3sin

2
sin

4
sin 32125.0

 
 (3.2) 

 
     

2
3sinsin

2
sin 3215.0

 
 (3.3) 

 
     

4
9sin

2
3sin

4
3sin 32175.0

 
 (3.4) 
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The results of δ1, δ2, and δ3 were divided by the length of the members to obtain distributions of δ1/L, δ2/L, and 
δ3/L. 
 
Both sets of data from the University of Sydney have measurements taken at various intervals along the 
length of the member. To solve for the scale factors, error between the measured imperfection at any location 
along the member and the reproduced imperfection calculated by the combinations of the first three eigen 
buckling modes was minimized. Error is calculated as: 
 

 

  
2

0

321



L

x

xxxx cbarE 
 (3.5) 

 
where x is the location along the member, 0≤x≤L, rx is the measured imperfection at location x, and ax, bx, and 
cx are the values of the 1

st
, 2

nd
, and 3

rd
 modes, respectively, at location x assuming the maximum value of 

each buckling shape is one. Solving the following equation yields solutions for δ1, δ2, and δ3: 
 

 

0
321


















EEE

 (3.6) 
 
Error minimization was performed for imperfection profiles for both axes of each member, and divided by the 
length of the measured section to obtain distributions of δ1/L, δ2/L, and δ3/L. 
 
Following the above mentioned procedure, distributions of δ1/L, δ2/L, and δ3/L were obtained for all members 
about both axes. As it is unknown how each member is oriented, especially in the case of square hollow 
sections, imperfections about the different axes were considered as separate data points. Thus, the data set 
consisted of ninety samples for each of the three buckling modes. Additionally, the sign of δ1/L, δ2/L, and δ3/L 
represented an arbitrary sign convention of either up or down from the horizontal, based on how the member 
was oriented when measured. However, imperfection direction is arbitrary and has an equal chance of 
occurring in either direction, thus only the magnitude of δ1/L, δ2/L, and δ3/L are important. Histograms of the 
magnitude of δ1/L, δ2/L, and δ3/L were created along with their lognormal distribution fits and are shown in 
Figure 3-2, Figure 3-3, and Figure 3-4. 
  
 

 
 

Figure 3-2: Histogram and lognormal PDF of the magnitude of δ1/L 
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Figure 3-3: Histogram and lognormal PDF fit of the magnitude of δ2/L 
 
 

 
 

Figure 3-4: Histogram and lognormal PDF fit of the magnitude of δ3/L 
 
 
The mean, standard deviation, and COV of the magnitude of δ1/L, δ2/L, and δ3/L are shown in Table 3-1. 

 
Table 3-1: Scale factors distribution results for member imperfections 

 abs(δ1/L) abs(δ2/L) abs(δ3/L) 

Mean (µ) 1.26E-4 4.08E-5 2.20E-5 

St. dev. (σ) 1.62E-4 5.16E-5 2.81E-5 

C.O.V. 1.29 1.26 1.27 

δ ≈ L/x δ1 ≈ L/8000 δ2 ≈ L/25000 δ3 ≈ L/45000 

 
 
Based on the relative magnitudes of δ1/L, δ2/L, and δ3/L, imperfection profiles were more heavily influenced by 
the 1

st
 mode, followed by the 2

nd
 mode, and then the 3

rd
 mode. The coefficient of variation is large due to the 

very small mean of the scale factors. The mean of δ1 is comparable to an imperfection of L/8000, which is 8 
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times smaller than the maximum permissible tolerance of L/1000 for bow according to AISC’s Code of 
Standard Practice, 2000 (Buonopane, 2008). 
 
It was determined that a lognormal distribution would be used to model the variability in the magnitude of the 
imperfection scale factors as it most closely fit the data among the commonly used distribution function. It is 
important to note that the lognormal function does not accurately portray the data, as it shows a zero 
probability of a section having no imperfection. The histograms of δ/L most closely resembled a Cauchy 
distribution centered around zero. Clearly there is a possibility of a member having no imperfection, however, 
making it impossible for a member to have no imperfection is conservative, and thus is desirable for design. 
 
 

3.3    IMPLEMENTATION IN MODELS 
 
To represent member imperfection profiles in the FE simulations, Latin Hypercube sampling was employed to 
reproduce the scale factors (δ1/L, δ2/L, and δ3/L) from the above lognormal distributions for each member in 
each simulation. Next, a random sign was generated (either +1 or -1) for each scale factor for each member to 
represent the direction of the imperfection. As a result, every member in every simulation had a randomly 
generated imperfection profile. 
 
The value of the nodal imperfection perpendicular to the member, u, along the length of the member is 
calculated as follows: 
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x
u

 3
sin

2
sinsin 3

3
2

2
1

1

 (3.7) 
 
where x/L is the location of each node relative to the length of the member from 0≤x≤L, s1, s2, and s3 are 
randomly generated signs represented by either +1 or -1, and δ1/L, δ2/L, and δ3/L are the randomly generated 
scale factors from the aforementioned distributions.  
 
For the 2D simulations, only in-plane member imperfection profiles were generated as out-of-plane 
displacements were restricted. For the 3D simulations, member imperfections were considered about both 
cross-sectional axes. As there was no evidence in the data of imperfections about one axis correlating to 
imperfections about the other axis, separate member imperfection profiles were generated for each axis of all 
members.  
 
 
 

4 RESIDUAL STRESSES 
 
The formation of cold-formed hollow sections produces a complex distribution of residual stresses. The 
sections are formed by uncoiling and leveling sheets of steel. They are next roll formed into tubes and seam-
welded, then sized into the required shape (Li at al., 2008). Specifically there are two methods for forming 
rectangular hollow sections, one by directly forming the rectangular section from the sheet, the other by 
forming a circle cross section from the sheet, then forming the circle into the final rectangular cross section (Li 
et al., 2009). The processes of uncoiling and leveling, roll-forming, and sizing produce residual stresses in 
both the longitudinal and circumferential directions, which affect the strength of the tubes (Kato and Aoki, 
1978). 
 
To model residual stress in the FE models, data was separated into longitudinal and transverse components. 
Residual stress distributions through the thickness and around the cross section and magnitudes of the 
residual stresses were determined based on models and experimental data found in literature. 
 
Although the data regarding residual stress distributions in cold-formed hollow sections is sparse, several 
distributions were analyzed to determine the best model to implement in the simulations. 

 

4.1    DISTRIBUTION 
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4.1.1  Longitudinal 
 
There were several models in the literature for longitudinal residual stress in HSS. The distributions were 
similar, but the model proposed by Davison and Birkemoe (1982) was chosen for its simplicity in defining an 
equation to represent the distribution. They experimentally measured residual stresses from coupons and 
determined a model to reflect the data and theory. Davison and Birkemoe (1982) determined that there are 
two residual stress gradients in the longitudinal direction, one across the tube face and around the cross 
section, denoted as membrane, and the other perpendicular to the tube face through the material thickness, 
denoted as bending. “The perimeter (membrane) residual stress gradient represents the variation in the mean 
value of the longitudinal residual stress [and] the through thickness (bending) residual stress gradient is the 
deviation from this mean value normal to the perimeter through the material thickness” (Davison and 
Birkemoe, 1982). In their model, bending is symmetrical through the thickness, with tension at the outer face 
and compression at the inner face (Figure 4-1(a)), and membrane residual stress is constant through the 
thickness (Figure 4-1(b)). They found that the maximum magnitude of through thickness residual stresses was 
less for coupons taken from the corners than for coupons taken from the flats (Davison and Birkemoe, 1982). 
Key and Hancock (1993) also confirmed that longitudinal bending through thickness residual stresses were 
smaller in magnitude in the corner than flats, specifically that the corners have half the value as the flats 
(Figure 4.3(a)). The numbers reflecting the location along the cross-section is depicted in Figure 4-2. 
Membrane residual stresses vary linearly along the cross section (Figure 4.3(b)). The stress magnitudes are 
equal for the flats and corners, but vary from maximum tensile stress at the flat centerline to maximum 
compressive stress at the corner (Davison and Birkemoe, 1982). The distributions through the thickness and 
across the section produce no net force as shown in Eq. (4.1) where σb is the bending residual stress and σm 
is the membrane residual stress.  
 

 
  0b m dA    (4.1) 

 

4.1.2  Transverse 
 
Traverse residual stress data for HSS members in the literature was minimal. The distribution proposed by 
Key and Hancock (1993) was chosen to model transverse residual stresses (Figure 4-1(c)), which consists of 
tension at the outer surface and compression at the inner surface for the bending component, and zero for the 
membrane component. The relationship between values at the outer surfaces to values on the plateaus was 
determined by enforcing the requirement of no net force on the section. This resulted in the stress on the 
plateau being equal to 0.61 times the surface stress. Data from Li et al. (2008), which was determined 
experimentally by X-ray diffraction, shows that the transverse residual stresses in the corners is a third of the 
transverse residual stresses in the flats. Figure 4-3(c) depicts the transverse residual stress distribution 
around the section. 
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Figure 4-1: Through thickness residual stress distribution for (a) longitudinal bending, (b) longitudinal 
membrane, and (c) transverse 

 
 
 
 
 

 
Figure 4-2: Square HSS numbered cross section points for reference in Figure 6 
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Figure 4-3: Residual stress distribution around cross-section at outside face for (a) longitudinal bending, (b) 
longitudinal membrane, and (c) transverse. Location numbers correspond to Figure 7 

 
 

4.2    MAGNITUDE 
 

4.2.1  Longitudinal 
 
Davison and Birkemoe (1983) produced a set of experimental surface residual stress measurements for both 
the membrane and bending components for the flats and corners. This is shown in Table 4-1 along with the 
values from their model. These values confirm the previously stated assumptions that the membrane value is 
approximately equal in magnitude for the corner and flats but tensile for flats and compressive for corners, 
and that the bending component in the corners is approximately half the value of the flats. The histograms of 
the magnitude of longitudinal membrane component and outer surface longitudinal bending residual stress 
component for flat sections are shown in Figure 4-4 and Figure 4-5 respectively. The magnitude of the 
longitudinal membrane component is best modeled by a lognormal distribution while the outer surface 
longitudinal bending residual stress is best modeled by a normal distribution. The distribution parameters are 
given in Table 4-4. 
 

 
Table 4-1: David and Birkemoe (1982) surface residual stress measurements (%Fy) 

Surface residual stresses Flat Corner 

 
Experimental 

(flat – 35 samples) 
(corner – 12 samples) 

Membrane 0.11 -0.15 

Bending 0.71 0.39 

Model Membrane 0.17 -0.17 

Bending 0.60 
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Figure 4-4: Histogram and lognormal PDF fit of the magnitude of longitudinal membrane residual stress as a 
percent of yield stress 

 

 
 

Figure 4-5: Histogram and normal PDF fit of outer surface longitudinal bending residual stress as a percent of 
yield stress for flat section 

 
 
 
As there was not enough data for the corners, the longitudinal membrane component for the corner was taken 
as the negative of the magnitude of lognormal membrane component obtained from the distribution, and the 
outer longitudinal bending component for the corner was taken as half the value obtained from the outer 
surface longitudinal bending residual stress component for the flats. 
 
To compare with surface measurements obtained by X-ray diffraction from Li et al. (2008), the bending and 
membrane components measured by Davison and Birkemoe (1982) were added together, and the results are 
shown in Table 4-2. These results are consistent with the model derived above as the membrane is equal in 
magnitude but opposite in sign for the flat and corner, and the bending component for the corner is 
approximately half the value of the flat.  
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Table 4-2: Longitudinal outer surface residual stress (%Fy) 

 Flat Corner 

Davison and Birkemoe 
(experimental) 

Mean 0.82 0.24 

# samples 35 12 

Li et al. Mean 0.83 0.60 

# samples 5 3 

Combined Mean 0.82 0.32 

# samples 40 15 

Final Component Flat Corner 

Total 0.8 0.3 

Membrane 0.1 -0.1 

Bending 0.7 0.4 

 
 

4.2.2  Transverse 
 
The value obtained by Key and Hancock (1993) for transverse residual stress was compared to measured 
values by Li et al. (2008) using x-ray diffraction (Table 4-3). Although the through thickness distribution 
obtained by Li et al. (2008) varied slightly from Key and Hancock's (1993) distribution, both were similar in that 
the maximum value of transverse residual stress occurred on the surface, thus measurements were 
compared. 
 

Table 4-3: Transverse outer surface residual stress (%Fy) 

 Flat Corner 

Key and Hancock Mean 0.50 – 

# samples 1 – 

Li et al. Mean 0.49 0.16 

# samples 5 3 

Combined Mean 0.49 0.16 

# samples 6 3 

Final Flat Corner 

0.5 0.2 

 
 
A histogram for the transverse outer surface residual stress for flats is shown in Figure 4-6. The variation was 
modeled as a normal distribution, with parameters given in Table 4-4. As there was not sufficient data for 
transverse residual stress for corners, its value was taken as one third that of the flat.  
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Figure 4-6: Histogram and normal PDF fit of outer surface transverse residual stress as a percent of yield 

stress for flat section 
 
 

4.3    IMPLEMENTATION IN MODELS 
 
A lognormal distribution was obtained for longitudinal membrane residual stresses, and normal distributions 
were obtained for longitudinal bending flat and transverse flat residual stresses. This was based on the limited 
amount of data collected, thus these distribution fits may not be accurate. More accurate probability 
distribution function fits can be obtained with greater samples of data. Due to the uncertainty in the data, only 
one significant figure was used for the mean and standard deviation, as reported in Table 6. The values 
represent the percent of the yield stress.  
 

Table 4-4: Residual stress distribution parameters 

Type μ (%Fy) σ Distribution 

Longitudinal membrane 0.1 0.08 lognormal 

Longitudinal bending flat 0.7 0.05 normal 

Transverse flat 0.5 0.04 normal 

 
 
To produce surface residual stress values for longitudinal and transverse components for the flat and corner 
regions, values for longitudinal membrane, longitudinal bending flat, and transverse flat were obtained from 
the above distributions, and combined as follows in Table 7. 
 
 

Table 4-5: Residual stress components for flat and corner 

Region Component Calculation 

Flat Longitudinal Longitudinal bending flat + longitudinal membrane 

Transverse Transverse flat 

Corner Longitudinal 1/2 longitudinal bending flat – longitudinal membrane 

Transverse 1/3  transverse flat 

 
 
Membrane residual stresses can be modeled in ABAQUS using the SIGINI subroutine by defining a value of 
the initial stress at each section point along the beam cross section. Unfortunately, the drivers and compilers 
needed to run the subroutine through ABAQUS were unavailable on the computing cluster at the time, and 
were therefore ignored in the modeling.  
 
Through thickness residual stresses cannot be directly modeled in ABAQUS with beam elements. It was 
incorporated into the models through a modified stress strain curve. For simplicity in analytically defining the 
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material curve, transverse through thickness residual stresses were ignored, and only longitudinal bending 
through thickness residual stresses were taken into account. 
 
The elastic-plastic material curve without the effects of residual stresses is defined by elastic (Eq. 4.2) and 
plastic (Eq. 4.3) components. 

 , 0
yF

E for
E

       (4.2) 

 ,
y

y

F
F for

E
    (4.3) 

 
Through thickness residual stresses cause a rounding of the stress strain curve (Figure 4-7). For the virgin 
material, all fibers reach yield stress at the same stain, εy=Fy/E, whereas in material with residual stresses, 
fibers reach the yield stress at different levels of strain. For a member in tension, fibers with the maximum 
tensile residual stress yield first, at a stain smaller than εy. As the member is further loaded, other fibers yield 
when the sum of the stress due to loading and residual stress equals the yield stress. Fibers with compressive 
residual stresses yield at a strain larger than εy as the initial compression counteracts the tensile forces. 
Eventually the cross section will fully yield and will experience strain hardening. The converse is true for 
members in compression. 
 

 
 

Figure 4-7: Stress-strain curve with and without the effects of residual stresses 
 
 
The modified stress-strain curve incorporating the effects of residual stresses is modeled as follows (Eq. 4.4 – 
4.6): 

 1, 0E for       (4.4) 

 
3 2

1 2,A B C D for             (4.5) 

 2,yF for   
 (4.6) 

 
where ε1 and ε2 are defined in Eq. 4.7 and 4.8 and σb is the value of the outer surface longitudinal bending 
residual stress. 

 1b yE F  
 (4.7) 

 2b yE F   
 (4.8) 

 
To solve for the four unknowns, A, B, C, and D, four initial conditions must be satisfied. Both the slopes and 
stresses at ε=ε1 and at ε=ε2 are known (Eq. 4.9 – 4.13). 
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 1 1( ) E    (4.12) 

 

 2( ) yF  
 (4.13) 

 
Solving the four simultaneous equations yields solutions for A, B, C, and D (Eq. 4.14). 
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 (4.14) 

 
With these values known, Eq. 4.5 was determined and the full stress-strain curve defined. 
 
 

5 MODELING 
 
Rectangular HSS are much preferred to circular HSS because joint fabrication is easier. For RHS connections 
only straight bevel cuts are needed, whereas CHS connections must be profile cut after the tubes are fitted 
together and require a varied bevel cut for welding. Additionally, the flat sides of RHS are desirable for 
attaching deck and paneling to the trusses, and can be stacked for ease of handling (Packer et al., 2009). 
  
Members come in a variety of thicknesses which affect their buckling behavior: compact, non-compact, and 
slender. Member thicknesses were chosen to have compact shapes so local buckling would not affect the 
strength of the system. Additionally, advanced analysis requires the members to be capable of plastic 
redistribution. In order to form a plastic collapse mechanism, sections must be capable of sustaining large 
rotations and displacements prior to failure. One of the criteria in AISC LRFD for suitability of plastic design is 
that the sections must be compact. Members were checked that they met AISC compact criteria so that local 
buckling would not affect strength, and provided that they meet the other provisions, were suitable for plastic 
design.   
 
Joints are expensive to fabricate, thus trusses with less joints are cheaper. Warren trusses with K joints are 
much preferred over Pratt trusses with N joints. Additionally, gap joints are easier to construct than overlap 
joints (Wardenier et al., 2010). 
 
Therefore, a Warren truss with K joints composed of rectangular hollow sections was selected. The example 
Warren truss from the RHS CIDECT design guide (Packer et al., 2009) was chosen since it met the above 
criteria and is a realistic truss one might encounter. 
 
For 3D simulations, there were six trusses spaced at 15 m intervals. The total area under the truss system (36 
m x 75 m or 118 ft x 246 ft) is sufficient to cover an indoor soccer field, and thus is a realistic layout. The 
trusses were connected by lateral bracings to prevent lateral torsional effects and aid load distribution 
between the trusses. 
 



Reliability-Based Design of Truss Structures by Advanced Analysis 

School of Civil Engineering Research Report R936 Page 20 
The University of Sydney 

The aforementioned random variables – geometric imperfections, member thickness, Young’s modulus, yield 
stress, and residual stresses, are all on a member by member basis. However, a system is a collection of 
individual members which interact with one another. Thus simply analyzing how variations in properties create 
variability in the strength of a single member is not sufficient; the variability in the strength of the entire system 
as a result of individual member variations must be analyzed.  
 
However, the strength of the system depends on its ability of lack thereof to redistribute loads. When a 
structural member reaches its fully plastic capacity, it will fail and form a plastic hinge. If the system has the 
ability and capacity to redistribute loads, additional load can be applied until a plastic collapse mechanism is 
formed and the entire structure fails. If the system cannot redistribute loads, the system will fail with the first 
failing member. A system with a low capacity to redistribute loads resembles a series system, while a system 
with a high ability to redistribute loads resembles a parallel system. 
 

5.1    JOINTS 
 
The first trusses consisted of individual members connected with steel pins. As these trusses were fully 
pinned, designers used statics to determine member axial forces. Later, truss designs changed and had 
continuous chords, however since the stiffness of connections were unknown, a pin-jointed analysis was still 
used. As computers came into use, designers used a plane-frame analysis to determine internal forces and 
moments, but only if the moment-rotation relationship between every connection was known. Since this data 
is not available for most joints, there are two main analysis techniques: either assume that all the members 
are pin-connected or assume that the truss has a continuous chord with pin-connected web members (Cran, 
1989). 
 
Modeling assumptions make design feasible in the absence of joint information; however it does not 
accurately portray the behavior of the structure. Different modeling assumptions may under or overestimate 
axial forces, internal moments, and deflections. It is important to compare the various models with 
experimental data to determine which produces the most accurate results.  
  
There are three common modeling types: pinned, rigid, and pin-rigid. In the pinned model, all joints are pin-
connected and can only transfer axial forces, whereas in the rigid model all joints are rigidly connected and 
can transfer in-plane axial, bending moment, and shear forces. In the pin-rigid model, the web members are 
pin-connected to continuous chords. The eccentricity between the web member centerlines and the chord 
centerlines are modeled as a stiff links (Figure 5-1). 
 

 
Figure 5-1: Pin-rigid model from Frater and Packer's "Modeling of hollow structural steel sections” (1992) 

 
 
In the pin-rigid model, model lines coincide with member centerlines, thus the true web to chord angle is 
maintained. This is a benefit over the pinned and rigid models where the web to chord angle must be changed 
for eccentrically noded joints. Noding eccentricities cause bending moments, however these can be ignored if 
they are within the eccentricity limits as defined by the International Institute of Welding (Frater and Packer, 
1992). The end fixities of the web members cause secondary bending moments, however these can also be 
ignored if there is adequate deformation capacity in both members and joints to allow for stress redistribution 
after local yielding of the joint (Frater and Packer, 1992). 
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The author devised another modeling technique where the web is pinned connected to the outside face of the 
chord, and a rigid link connects the outside face of the chord to the chord centerline (Figure 5-2). This reflects 
how the web is connected to the chord face, and hence that is where forces are transmitted to the chord 
cross-section. 
 

 
Figure 5-2: Author’s connection modeling technique 

 
 
Prior to obtaining any realistic finite element results from truss models, it was necessary to complete a mesh 
convergence study. The mesh density required to produce convergent results was determined, and this mesh 
density was used in all subsequent finite element models. 
 
In order to confirm that the connection modeling technique in Figure 5-2 led to correct results, a finite element 
model was created of a full scale experimental truss test and results were compared. The truss test selected 
was from Frater and Packer (1992) in which a full scale Warren truss made of rectangular HSS members was 
tested in the elastic range. The axial forces and bending moments in the chords and webs produced in the 
experiment were approximately the same as those produced in the finite element model. Thus it was 
concluded that connection modeling technique in Figure 5-2 yielded appropriate results. 
 

5.2    INPUTS AND ANALYSIS 
 
The aforementioned random variables (E, Fy, t, geometric imperfections, residual stresses (σr)) affect the 
resistance of truss. However, there is also a variation in the applied loads. Random loads proposed by 
Ellingwood and Galambos (1982) were utilized in the simulations and are presented in Table 8. 
 

Table 5-1: Random loads 

Load Mean /  Nominal C.O.V. Distribution 

Dead Load, D 1.05 0.10 Normal 

Live Load, L 
50 year maximum 

1.0 0.25 Extreme type I 

Live Load, Lapt 
Point-in-time 

0.25 0.55 Gamma 

Snow Load, S 
50 year maximum 

0.82 0.26 Extreme type II 

 
 
Monte Carlo simulation is the most straightforward method to generate random data from a known 
distribution. However, it requires a large sample number in order to accurately reproduce the distribution. 
Instead, Latin Hypercube sampling was employed to reduce the number of simulations required to reproduce 
the distribution. In this sampling technique, the area under the probability distribution function is divided into N 
strata of equal area, hence equal probability of occurrence. For instance, areas under the tail of the PDF have 
wider strata while areas under the peak have narrow strata. Therefore there are more strata in the vicinity of 
the peak than in tails, reflecting how more of the data is located under the peak and less under the tails. Next, 
a random value is selected from each of the N intervals as a representative value for each strata. If the 
number of intervals is large, the mid-point of each strata can be selected instead of random sampling (Nowak 
and Collins, 2000). Each representative value is randomly selected and used only once (no repeated values) 
for all N simulations, thereby effectively randomly reproducing the given distribution. The recreation of the 
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distribution of Young’s Modulus using Latin Hypercube simulation is shown in in Figure 5.3. Note that for 
N=350, the normal distribution is accurately recreated. As N=350 was sufficient to reproduce distributions for 
other variables, it was concluded that 350 simulations was sufficient for each truss system.  
 

 
 

Figure 5-3: Variation in E using Latin Hypercube sampling for N=350 
 
 
As stated previously, the truss design example by CIDECT (Packer et al., 2009) was selected for modeling. 
The truss layout and loads applied is shown in Figure 5-4. However, some modifications were made to the 
section sizes given in the design example. For simplicity, all chords were the same section size, and all webs 
were the same section size. As members designed for compression are more crucial, both top and bottom 
chords were selected as the top chord size (180 x 180 x 8.0 mm RHS), and webs as the compression 
diagonals (120 x 120 x 4.0 mm RHS). These members were checked for compactness according to AISC 
LRFD criteria for steel HSS (AISC, 2000). 
 

 0.939
y

b E
t F
  (5.1) 

 
The chord members are compact, but not the web members. Another possible compression diagonal size as 
given in the design example, a 100 x 100 x 5.0 mm RHS, met compactness criteria and was used for web 
members. Lateral bracings were sized to that of the webs. 

 
Figure 5-4: Truss design example layout by CIDECT 
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The truss design as given in Figure 5-4 fails by flexural buckling of the top chord in the center spans. Using 
Euler buckling (Eq. 24) where K=0.9 (AISC 2000), the axial force at buckling was determined to be 1726 kN. 
An elastic frame analysis was completed on the truss with loads applied as shown in Figure 5-4, and resulted 
in the top chord experiencing an 1143 kN compressive force. Therefore, the 2D truss should be able to 
withstand an applied load of 1.5 times the design loads. 
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KL


  (5.2) 

 
For all of the random variables considered, the nominal values, means, standard deviations, and distribution 
type are given in Table 10. For each truss, chord members were correlated and web members were 
correlated, hence all chords in a truss shared the same random values of E, Fy, t, and σr, and all webs shared 
their own value of E, Fy, t, and σr. Trusses were uncorrelated, so there were six unique trusses in the system. 
All chord and web members had their own unique randomly generated imperfection profile. Lastly, lateral 
bracings did not have random values as their strength is not crucial to the overall strength of the system, and 
were evaluated at the nominal values for the webs. Lateral bracings consisted of straight members running 
perpendicular to the trusses which connected the top chord panel points to the same panel point on the next 
truss, and diagonal bracings which connected the top chord panel points to the adjacent top chord panel 
points on the next truss to form a “V” shape (Figure 5-5). 

 

 
 

Figure 5-5: 3D truss system layout 
 

 
The loads given in the design example are 108 kN at the interior panel points and 54 kN at the exterior panel 
points. For random loads, the applied load must be separated into live load and dead load. Assuming that live 
load is three times the dead load, and the load combination of 1.2D + 1.6L was utilized to calculate the 108 kN 
applied load, the un-factored dead load is 18 kN and the un-factored live load is 54 kN. 
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Table 5-2: Random variables in FE simulations 

Variable Nominal μ σ distribution 

tc 8.0 mm 0.964 *tnominal 0.039 Normal 

tw 5.0 mm 

E 200 GPa Enominal Emean*0.06 Normal 

Fy 0.35 GPa 1.1*Fynominal Fymean*0.1 Normal 

σr 0 (GPa) 0.7*Fymean 0.05 Normal 

δ1/L  
0 

1.26E-4 1.64E-4  
Lognormal δ2/L 4.08E-5 5.16E-5 

δ3/L 2.20E-5 2.81E-5 

D 18 kN 1.05*Dnominal Dmean*0.10 Normal 

L 54 kN Lnominal Lmean*0.25 Extreme type I 

 
 
The truss systems were modeled in ABAQUS (2007) commercial finite element software using beam section 
elements type B31. Random variables were computed and input files written in MATLAB (Mathworks, 2011). 
The simulations were run on the Civil Engineering department’s computing cluster at Johns Hopkins 
University. 
 
 

 
  



Reliability-Based Design of Truss Structures by Advanced Analysis 

School of Civil Engineering Research Report R936 Page 25 
The University of Sydney 

6 SYSTEM RELIABILITY   
 

6.1    BACKGROUND 
 
The load and resistance (LRFD) specification uses load and resistance factors to obtain a target reliability (Eq. 
6.1). 

 n i ni

i

R Q   (6.1) 

 
Reliability is related to the probability of failure as follows: 
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where Φ is the standard normal cumulative distribution function. Specifying a target reliability index, β=βT, 
enforces a uniform probability of failure. The current LRFD factors assume a member-based design and there 
is a resistance factor, ϕ, for each loading condition and type of failure. In component based design, all 
members and connections must be checked for all limit states, which is not an efficient process. Additionally, 
different members have various β, such as between 3 to 4 for beams, and 6 to 8 for fasteners (Nowak and 
Collins, 2000), which was a result of the calibration of LRFD to ASD. Designing to a target β for all cases will 
increase efficiency as no member or connection will be excessively over or under-designed. However, 
designing on a component basis does not accurately capture the system effect. 
 
A system in which all members and connection meet βT will not necessarily have a system where β = βT. This 
is because there is a complex interaction between members and connections in a system, with varying levels 
of load redistribution among the members. In order to meet βT for the system, advanced analysis must be 
performed. The AISC LRFD specification (2005) allows for direct 2

nd
 order analysis (Appendix 7). The 

resistance factor for the system to meet βT is different than that of an individual component’s limit state 
resistance factor. The derivation for calculating the resistance factor is shown below. 

 
The load effect Q on a structure and the resistance factor R are considered to be statistically independent 
random variables. The probability of failure is the probability that R < Q. This can be expressed as a single 
frequency distribution curve which combines the uncertainties in R and Q by dividing R < Q by Q and 
expressing the result logarithmically (AISC, 1986). Therefore, the probability of failure is equal to the 
probability that the indicator function, g, is less than zero as shown in Eq. 6.3 where the subscript m denotes 
the mean value. 
 

 ln 0m

m
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g

Q
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 (6.3) 

 
The reliability index is the mean divided by the standard deviation of the indicator function g and is calculated 
in Eq. 6.4. 
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Using small-variance approximations (Ellingwood et al., 1980), β is solved for as follows where V is the 
coefficient of variation: 
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Rearranging to separate the means of resistance and load effects:  
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  2 2expR R Q QV V     (6.6) 

 
The substitution below is made (AISC, 1986): 
 

 
2 2

R Q Q RV V V V    (6.7) 

 
Substituting Eq. 6.7 into Eq. 6.6 and rearranging yields: 
 

    exp expR R Q QV V      (6.8) 

 
The resistance factor R is expressed in Eq. 6.9, where M is the variation in strength of the material, F is the 
variation in fabrication, and P is the variation due to the methods of analysis. The load effect Q is expressed in 
Eq. 34, where A is the variation in load, B is the variation due to the mode in which the load acts, and C is the 
variation due to the methods of analysis (Nowak and Collins, 2000). The subscript n denotes the nominal 
value. 
 

 nR P M F R     (6.9)

  

 nQ A B C Q     (6.10) 

 
Solving for VR, μR, VQ, μQ and substituting into Eq. 6.8 yields Eq. 6.11: 
 

    2 2 2 2 2 2exp expP M F P M F n A B C A B C nV V V R V V V Q              (6.11) 

 
which is now in the LRFD format as shown below: 
 

 n nR Q   (6.12) 

 
The resistance factor is computed as shown in Eq. 6.13. This is the resistance factor as given in AISC LRFD, 
1986. 
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Results from the simulations yielded values for Rm, Rn, and VR. The resulting resistance factor for the system 
was then calculated. 
 
 

6.2    PROPOSED SYSTEM RELIABILITY METHOD 
 
The procedure for determining a system resistance factor is as follows: 

1) Determine strength limit state (in this case it is ultimate capacity). 
 

2) Choose a truss geometry and layout and calculate nominal loads. 
 

3) Check design to existing specifications to make sure it is not excessively over or under-
designed. 

 

4) Identify the random variables affecting strength, choose a load combination, and apply loads 
using a load increment factor. 
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5) Run an advanced analysis using nominal values of all random variables. The load increment 
factor causing failure is denoted λun. 
 

6) Run simulations varying the random variables. For each simulation, the load increment 
factor causing failure is denoted λu. 

 

7) Determine the mean and C.O.V of λu/ λun (Eq. 6.14 and 6.15). These are the statistics of the 
resistance. 
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8) Determine the system resistance factor using the statistics for the resistance (Eq. 6.13) 
where α=0.55 and β=3 (AISC, 1986). 
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9) For the given value of ϕ, determine the probability of failure (pf) and the reliability index, β. 
This is done by running advanced analysis of the simulations with random variables affecting 
the strength and random loads for the specific load combination. A load increment factor, λ, 
is applied to the factored loads until the strength limit state is reached. This value is denoted 
λmax.  
 

10) Plot the distribution of λmax. The failure condition is defined in Eq. 6.17. The probability of 
failure is obtained from the cumulative distribution function of the fitted distribution. 

 

 max 1 0failure     (6.17) 

 

11)  Calculate the reliability index resulting from the probability of failure. This is computed by 
taking the inverse of the standard normal CDF (Eq. 6.18). 
 

  1

fp    (6.18) 

 
The above method is useful to calculate the actual system reliability. This calculated β is the system reliability 
of a system designed based on individual components. To design a system with a specified target reliability, 
βT, continue with the following steps: 
 

12)  If the calculated β does not equal the target βT, the structure needs to be redesigned. This 
could involve the use of a different section, or alternatively as was done herein, the thickness 
of all members was scaled. The redesign should satisfy Eq. 6.19. 
 

 
  max' 1  

 (6.19) 
 

13)  Repeat steps 9-12 until the target βT is met, or close enough to obtain an accurate estimate 
using linear interpolation. The value of ϕ corresponding to βT is the system resistance factor. 

 
Repeat this procedure for various load combinations. For the gravity case, the load increment factor is applied 
to the factored dead and live loads (Eq. 6.20). For the wind or snow dominated load case, the gravity 
component due to dead and live loads in considered constant, and the load increment factor is applied to 
either the factored wind or snow load component (Eq. 6.21 – 6.22). These are the load combinations for LRFD 
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where load combination models the design load when one load component is at its maximum value and the 
others are taken at their arbitrary-point-in-time values (AISC, 2005). Thus only one load component is scaled 
until failure while the others remain at their arbitrary-point-in time values. While this does simplify the loading 
conditions, it is necessary as directly simulating the loading conditions along with all the variations affecting 
resistance would be too cumbersome a process. 
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6.3    VARILIBILTY IN RESISTANCE 
 
The following is an implementation of steps 5-8 of the above procedure (steps 1-4 were previously completed) 
for the gravity controlling load combination. The truss simulations included random variables affecting 
resistance only; loads were taken at their nominal values. Results from simulations of 2D and 3D models with 
loads applied at the top chord and bottom chord were completed. 
 
Below are the histograms and PDF fits for simulations ran with random variables affecting the resistance, but 
loads at their nominal values. The load proportionality factor, LPF, also denoted λmax above, was the load 
increment factor applied to the factored loads until the strength limit state was reached for each simulation. 
Figure 6-1 shows the results of the 2D simulations, Figure 6-2 shows the results of the 3D simulations with 
loads applied at the top chord, and Figure 6-3 shows the results of the 3D simulations with loads applied at 
the bottom chord. For the 3D simulations, both simulation sets (loads applied at TC and BC) had the same set 
of random truss structures generated, only the load application point changed. This was done to analyze of 
the effects of lateral bracings on the lateral torsional buckling failure mode. The results of the simulations and 
probability of failure and β calculated from the fitted distributions are given in Table 6.1 

 
 

Figure 6-1: Histogram and normal PDF fit of maximum load proportionality factors for 2D truss simulations 
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Figure 6-2: Histogram and normal PDF fit of maximum load proportionality factors for 3D truss simulations 
with loads at top chord 

 
 

 
Figure 6-3: Histogram and normal PDF fit of maximum load proportionality factors for 3D truss simulations 

with loads at bottom chord 
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Figure 6-4: PDFs of maximum load proportionality factors for 2D, 3D load at top chord, and 3D load at bottom 
chord truss simulations with nominal loads 

 
 
 
 

Table 6-1: Results of simulations with nominal loads 

 2D 3D_TC 3D_BC 

Nominal 1.500 1.498 1.508 

μ 1.212 1.137 1.154 

μ/nominal 0.808 0.759 0.765 

σ 0.111 0.049 0.051 

V 0.091 0.043 0.051 

Pf 0.0281 0.0024 0.0013 

β 1.91 2.82 3.01 

 
 
The 3D simulations have a higher β than the 2D simulations. This is not because the 3D system is stronger, 
as the nominal maximum λ is about equal for 2D and 3D simulations. Instead, this is a result of the decreased 
variance in the 3D simulations. The variance in the maximum load decreased about 55% in the 3D system 
versus the 2D system. 
 

6.4    FAILURE MODES AND SYSTEM EFFECTS 
 
The 2D nominal truss failed due to flexural buckling in the center top chord at a load proportionality factor of 
1.5. This matches the prediction based on design calculations. In the 2D simulations including random 
variations affecting strength, the weaker trusses failed by flexural buckling in one of the center top chords, 
while the stronger trusses failed by flexural buckling in both center top chords, and were able to experience 
larger deflections. Figure 6.5(a) shows the load proportionality factor versus the vertical deflection at the 
center of the bottom chord for three of the 2D simulations: the strongest, the weakest, and a mid-strength 
truss.  
 
In the 3D simulations, the trusses also failed in the top chord of one or both of the middle trusses. Figure 
6.5(b) shows the load proportionality factor versus the vertical deflection at the center of the bottom chord for 
one of the middle trusses. Most of the trusses experienced about the same vertical deflection, however out-of-
plane displacements varied based on the strength of the truss. Figure 6.6 shows the load proportionality factor 
versus horizontal displacements at the center of the bottom chord for one of the middle trusses. Strong 
trusses experienced no out-of-place displacements, while mid-strength trusses experienced a small 
deflection, and weak trusses experienced out-of-plane deflections after reaching their maximum load.  
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Figure 6-5: Load proportionality factor versus vertical deflection at BC for (a) 2D simulations and (b) 3D 
simulations 

 
 

 
 

Figure 6-6: Load proportionality factor versus horizontal deflection at BC for 3D simulations 
 
 
Results for the 3D simulations with loads applied at the top chord or bottom chord were close, but those due 
to load applied at the bottom chord were slightly improved. This is because loads applied at the bottom chord 
help to counteract the movement of the truss in the out-of-plane direction, while loads applied at the top chord 
increase the instability. Since overall the results were close, it was determined that the lateral bracing at the 
top chord was sufficient. 
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It is important to note the effect of proper lateral bracings. If the system is not properly braced, it will fail by 
lateral torsional buckling. A set of simulations was completed without diagonal lateral bracings, but with only 
the bracings perpendicular to the top chord. The mean max load increment factor was λ = 0.953 for this set, 
and the failure mode was out-of-plane lateral torsional buckling. Without proper lateral bracings, the system 
was worse than that of a single truss in 2D, and as the mean max λ was less than 1, over half of the random 
systems did not even resist nominal loads. Although the individual members are square HSS and have the 
same properties about both axes, as a system it has a strong axis and a weak axis. The truss can be 
analyzed as a beam consisting as a W shape, where the top and bottom chords are the flanges, and the 
diagonals act as a thin web. Therefore, the system is very weak in resisting out-of-plane bending and must be 
braced accordingly, while it is much stronger in resisting in-plane bending. This shows the importance of 
understanding how to properly brace a system. 
 
The 3D truss system is a system of random 2D trusses. To determine the system’s behavior, the probability of 
failure found by the 3D simulations was compared to the probability of failure from an ideal series system (Eq. 
6.23) and an ideal parallel system (Eq. 6.24):  
 

  ( ) 1 1
n

f series fp p    (6.23) 

 

  ( )

n

f paralled fp p  (6.24) 

 
where pf is the probability of failure of the random 2D truss, which is given in Table 6.2 (pf=0.0281). Using the 
above equations, pf(series)=0.1572 and pf(parallel)=4.923E-10. The pf(system) found in the 3D simulations is given in 
Table 6.2 (pf(system) =0.0024). The 3D system is able to redistribute some of the load, however it is much closer 
in behavior to that of a series system than that of a parallel system. This is not surprising as trusses are 
typically categorized as series systems (Nowak and Collins, 2000).  
 
 

6.5    VARIABILITY IN RESISTANCE AND LOAD 
 
The data presented below is for simulations with random variables affecting the resistance of the system as 
well as random loads for the gravity controlling load combination. This includes procedure steps 9-13. All 
trusses herein had loads applied at the top chord panel points. Figure 6-7 is the histogram and PDF fit for the 
2D simulations, while Figure 6-8 is that of the 3D simulations. Results of the simulations as well as calculated 
probability of failure and β are given in Table 6-2. 
 

 
 

Figure 6-7: Histogram and normal PDF fit of maximum load proportionality factors for 2D truss simulations 
with random loads 
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Figure 6-8: Histogram and normal PDF fit of maximum load proportionality factors for 3D truss simulations 
with random loads at top chord 

 
 

 
 

Figure 6-9: PDFs of maximum load proportionally factors for 2D and 3D truss simulations with random loads 
at top chord 

 
 
 
Once again, the 2D simulation results have a larger spread than the 3D, and thus a lower β value. 
Additionally, for both 2D and 3D results, the β value is lower when incorporating random loads than the 
simulations with nominal loads. For the 3D simulations β=2.11, which is lower than the target value of β=3. 
The truss was redesigned by increasing the thickness of the chord members, as the chord was the critical 
member to fail first. Simulations were completed for tc=9.0mm, and the resulting histogram is shown in Figure 
6-10 and results in Table 6-2. This yielded β=3.83, which is above the target value. Using linear interpolation, 
it was estimated that a tc=8.5mm would yield the target βT=3.0, so another set of simulations was completed 
for tc=8.5mm. The histogram of results is shown in Figure 6-11 and results given in Table 6-2. 
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Figure 6-10: Histogram and normal PDF fit of maximum load proportionality factors for redesigned 3D truss 
(tc=9.0mm) simulations with random loads at top chord 

 
 

 
 

Figure 6-11: Histogram and normal PDF fit of maximum load proportionality factors for redesigned 3D truss 
(tc=8.5mm) simulations with random loads at top chord 
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Table 6-2: Results of simulations with all random variables considered 

 2D 
(tc=8mm) 

3D_TC 
(tc=8mm) 

3D_TC 
(tc=9mm) 

3D_TC 
(tc=8.5mm) 

Nominal 1.500 1.498 1.684 1.598 

μ 1.193 1.126 1.226 1.180 

μ/nominal 0.795 0.752 0.728 0.738 

σ 0.118 0.060 0.059 0.061 

V 0.099 0.053 0.048 0.052 

Pf 0.0505 0.0173 6.39E-5 0.0016 

β 1.64 2.11 3.83 2.95 

ϕ s 0.676 0.688 0.672 0.678 

 

The redesign of the truss system with a top chord thickness of 8.5mm (was originally 8.0mm) gave a close 
reliability index to the target value. The resistance factor associated with β=3.0 should be about the same for 
that of β=2.95. Therefore, the system resistance factor for the gravity load combination (1.2D + 1.6L) is given 
as ϕ=0.678. This is a lower resistance factor than is typical for a single component (ϕ=0.75 – 0.9). A lower 
resistance factor requires a larger nominal resistance so that Eq. 6.1 remains true. Therefore, designing as a 
system would require the structure to have a higher nominal resistance, which would usually be fulfilled by 
larger section sizes, hence greater material costs. 
 
This roof system is not likely not be controlled by wind load, however depending on the location snow load 
may be a controlling load combination. Therefore, the system reliability analysis should be completed for the 
load combination given in Eq. 6.22. 
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7 CONCLUSIONS 
 
The work presented herein is a formwork for determining a system resistance factor to meet a target reliability 
index in LRFD format. Current design specifications apply a resistance factor to each member and 
connection; however this fails to reflect system behavior. In order to obtain the desired reliability index, a 
system resistance factor must be used instead of a member resistance factor. 
 
Finite element models were created and analyzed using an advanced second order analysis. The specific 
system analyzed herein, a system of 2D trusses composed of HSS members connected with lateral bracings, 
had a higher reliability index, hence lower probability of failure than a single 2D truss. This was not a result of 
a change in mean strength from 2D to 3D, but rather due to a reduction in variance of 50% for the 3D system. 
The 3D system was an improvement over the 2D system, however there could be further improvements if the 
system were redesigned to more closely resemble that of a parallel system. Overall, the system resistance 
factor for both 2D and 3D was lower than that of individual components (ϕ=0.75 – 0.90 depending on the 
component). 
 
It is important to collect data for all variables affecting resistance and load in order to reflect real structures. 
Random variable data collected that affected resistance included geometric member imperfection, thickness, 
Young’s modulus, yield stress, and residual stresses. Member imperfection profiles were generated based on 
measurements found in literature. Imperfections were significantly smaller than the maximum permissible 
tolerance of L/1000. Distributions of residual stresses in HSS based on measurements in literature were 
presented. For other types of structures and materials, additional data will be needed on random variables 
affecting the desired limit state. Random loads were implemented through AISC’s (2005) load combinations. 
 
Large scale simulations and models are becoming less computationally expensive to perform as computing 
technology improves. Design will shift away from a component based design towards system design by 
advanced second order analysis. It is the goal that system design will more accurately reflect real structural 
behavior and lead to safer designs, as well as promote innovation in design. Enforcing a uniform reliability, 
hence uniform probability of failure, will increase safety in systems which are under-designed and increase 
efficiency in those which are currently over-designed. Shifting the mindset away from a critical member design 
to a system design approach will enable engineers to deviate from the standard structural configurations and 
innovate on new ones. 
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