DESIGN CHECK NO. 2—Design capacity of flange cover plates

One Plate Flange Splice

Design requirements:

$$\phi N_{\rm pt} \geq N_{\rm ft}^{\star}$$
 tension flange, $N_{\rm ft}^{\star}$ calculated in accordance with Table A1

$$\phi N_{pc} \ge N_{fc}^*$$
 compression flange, N_{fc}^* calculated in accordance with Table A1

where:
$$\phi N_{pt}$$
 = design capacity of flange cover plate in tension (using AS 4100 Clause 7.2)

= for one plate splice, the minimum of:

$$0.9 \times f_{vi}t_ib_i$$

$$0.9 \times 0.85 \ f_{ui}t_i \ (b_i - n_q d_h)$$

 $\phi N_{\rm pc}$ = design capacity of flange cover plate in compression (using AS 4100 Clause 6.2.1 assuming holes are filled with bolts and that $k_{\rm f}$ = 1.0)

$$= 0.9 \times f_{vi}t_ib_i$$

Three Plate Flange Splice

Design requirements:

$$0.8 \le (b_{i1}t_{i1}/2b_{i2}t_{i2}) \le 1.25$$

$$\phi N_{\text{pt1}} \geq N_{\text{ft1}}^*$$

$$\phi N_{\text{pt2}} \geq N_{\text{ft2}}^{\star}$$

$$\phi N_{pc1} \ge N_{fc1}^*$$

$$\phi N_{pc2} \ge N_{fc2}^*$$

where N_{fr1}^{\star} , N_{fr2}^{\star} , N_{frc1}^{\star} , N_{frc2}^{\star} are as defined in DESIGN CHECK NO. 1

$$\phi N_{\text{pt1}} = \text{minimum of } [0.9 \times f_{\text{vi1}} b_{\text{i1}} t_{\text{i1}}; 0.9 \times 0.85 \times f_{\text{ui1}} (b_{\text{i1}} - n_{\text{q}} d_{\text{h}}) t_{\text{i1}}]$$

$$\phi N_{\text{pt2}} = \text{minimum of } [0.9 \times f_{\text{vi2}} \, 2b_{i2} \, t_{i2}; \, 0.9 \times 0.85 \times f_{\text{ui2}} (b_{i2} - 0.5 n_{\text{q}} d_{\text{h}}) \, 2t_{i2}]$$

$$\phi N_{pc1} = 0.9 f_{vi1} b_{i1} t_{i1}$$

$$\phi N_{pc2} = 0.9 \ f_{yi2} \ 2b_{i2} \ t_{i2}$$

Terms are as defined in Figure A6 and Table A5 in DESIGN CHECK NO. 1.

Detailing limitations:

 b_i , b_{i1} – approximately equal to b_f (= member flange width)

$$b_{i2} \leq 0.5 (b_f - t_w) - r$$

where: $t_{\rm w}$ = member web thickness

r = member root radius

 $t_{i1} = t_{i2}$ preferred for three plate splice from fabrication viewpoint but above limitation on ratio of cover plate areas must be complied with for three plate flange splice

Cover plates may be either

- flat bars (discussed in Section 5.2 of Handbook 1); or
- plates (discussed in Section 5.3 of Handbook 1—Ref. 15).

Strength of flat bars and plates used as cover plates are given in Table A6.

TABLE A6 DESIGN STRENGTHS OF COVER PLATES

Strength of flat bars to AS 3679.1 (Ref. 8) Grade 300 Strength of plate to AS 3678 (Ref. 7) Grade 250

Thickness of bar	Yield stress	Tensile strength
mm	MPa	MPa
< 11	320	440
≥ 11, ≤ 17	300	440
> 17	280	440

Thickness of plate	Yield stress	Tensile strength
mm	MPa	MPa
≤ 8	280	410
> 8, ≤ 12	260	410
> 12, ≤ 50	250	410

Design Guide 13 Splice connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 13 Splice connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 13: Splice connections

1st ed.

Bibliography.

ISBN 978 1 921476 16 7 (pbk.). ISBN 978 1 921476 17 4 (pdf.).

1. Steel, Structural—Standards – Australia.

2. Steel, Structural—Specifications – Australia.

3. Joints, (Engineering)—Design and construction.

I. van der Kreek, N.

II. Australian Steel Institute.

III. Title

(Series: Structural steel connection series).

This publication originated as part of Design of structural connections

First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

Also in this series:

Design capacity tables for structural steel. Volume 3: Simple connections—Open sections

Handbook 1: Design of structural steel connections

Design Guide 1: Bolting in structural steel connections

Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections

Design Guide 4: Flexible end plate connections

Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 10: Bolted end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate to column moment connections

Design capacity tables for structural steel. Volume 4: Rigid connections—Open sections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

CONTENTS

		Pa	age			Page
Lis	t of fig	jures	iv	В3	Detailing considerations	48
Lis	t of tal	bles	V	B4	Basis of design model	49
Pro	eface		vi	B5	Recommended design model—	
Ab	out the	e author	vii		Summary of design checks	50
Ab	out the	e contributing author	vii	B6	Recommended design model—	
		edgements	viii		DESIGN CHECK NO. 1	51
		•		B7	Recommended design model—	
1	CONC	CEPT OF DESIGN GUIDES	1		DESIGN CHECK NO. 2	56
	1.1	Background	1	B8	Recommended design model—	
					DESIGN CHECK NO. 3	59
2	AS 41	100 REQUIREMENTS		В9	Recommended design model—	
	2.1	Minimum design actions	2	-	DESIGN CHECK NO. 4	61
	2.2	Member section capacity at splice		B10	Recommended design model—	
		location	3	-	DESIGN CHECK NO. 5	65
	2.3	Full contact splices in columns	6	B11	Recommended design model—	
_	0410	NULLATION OF BEOLON ACTIONS	_		DESIGN CHECK NO. 6	67
3	CALC	CULATION OF DESIGN ACTIONS	/	B12	Recommended design model—	
4	DEEE	RENCES	12		DESIGN CHECK NO. 7	68
4	IXLI L	INCLUDES	12	B13	Recommended design model—	
PΑ	RT A	BOLTED COVER PLATE SPLICE	13		DESIGN CHECK NO. 8	69
•	A1	Description of connection	13	B14	Design example	70
	A2	Typical detailing of connection	14	B15	Design capacity tables	76
	A3	Detailing considerations	16			
	A4	Basis of design model	17		FULLY WELDED SPLICE	
	A5	Recommended design model—		C1	Description of connection	82
		Summary of design checks	19	C2	Typical detailing of connection	83
	A6	Recommended design model—		C3	Detailing considerations	84
		DESIGN CHECK NO. 1	20	C4	Basis of design model	85
	A7	Recommended design model—		C5	Recommended design model—	
		DESIGN CHECK NO. 2	26		Summary of design checks	86
	A8	Recommended design model—		C6	Recommended design model—	
		DESIGN CHECK NO. 3	28		DESIGN CHECK NO. 1	87
	A9	Recommended design model—		C7	Recommended design model—	00
		DESIGN CHECK NO. 4	32	00	DESIGN CHECK NO. 2	88
	A10	Recommended design model—		C8	Recommended design model—	00
		DESIGN CHECK NO. 5	33	00	DESIGN CHECK NO. 3	89
	A11	Recommended design model—		C9	Recommended design model—	0.4
		DESIGN CHECK NO. 6	34	040	DESIGN CHECK NO. 4	91
	A12	Design example	35	C10	Design example	93
	A13	Design capacity tables	39	C11	Design capacity tables	96
РΔ	RTB	BOLTED/WELDED COVER		APPEND	DICES	
		PLATE SPLICE	45	Α	Limcon software	99
	B1	Description of connection	45	В	ASI Design Guide 13	
	B2	Typical detailing of connection	46		comment form	108

LIST OF FIGURES

	Page		Page
Figure 1 Figure 2	Flange hole configurations	Figure B4	Typical detailing in tension member47
Figure 3	Section dimensions—	Figure B5	Geometry of flange splice plates .53
rigule 3	Symmetrical section 8	Figure B6	Fillet weld arrangement at
Figure 4	Alternative stress distributions	gae _e	flanges57
9	in section due to M^*	Figure B7	Single line of bolts—Bolt forces
Figure 5	Design factors for		acting towards an edge61
	unsymmetrical sections 11	Figure B8	Double line of bolts—Bolt forces
Figure 6	Design moment at a column		acting towards an edge62
	splice	Figure B9	Geometry and design actions on web weld65
Figure 7	Preferred column splice location. 11	Figure R10	Geometry of web cover plates67
Figure A1	Bolted cover plate splice	•	Design example—Column splice
Figure A2	Typical detailing in flexural member 14	rigule biri	not prepared for full contact70
Figure A3	Typical detailing in	Figure B12	Section with holes in one
i iguio 710	column/beam-column 15	J	flange—Elastic section74
Figure A4	Typical detailing in tension	Figure B13	Section with holes in one
J	member 15		flange—Plastic section75
Figure A5	Eccentricity in flange cover	Figure C1	Fully welded splice82
	plates	Figure C2	Typical detailing of welded
Figure A6	Geometry of flange splice plates 22	Fig C2	splice83
Figure A7	Single line of bolts—Bolt forces	Figure C3	Use of backing strips84
Γ: Λ O	acting towards an edge	Figure C4	Preferred splice location in column84
Figure A8	Double line of bolts—Bolt forces acting towards an edge 29	Figure C5	Staggering of flange and
Figure A9	Geometry of web cover plates 32	r iguro co	web splice locations85
J	Design example—Beam splice 35	Figure C6	Design actions on flange welds 87
Figure B1	Bolted/welded cover plate	Figure C7	Web cover plate dimensions89
	splice	Figure C8	Geometry and design actions
Figure B2	Typical detailing in flexural		on web weld91
	member 46	=	Design example—Beam splice93
Figure B3	Typical detailing in	Figure C10	Web fillet weld geometry for
	column/beam column 47		design example94

LIST OF TABLES

	Page		Page
Table 1	Universal beams Grade 300— Design section moment and shear capacities	Table B5 Table B6	Values of ϕV_{bf} and ϕV_{bi}
Table 2	Parallel flange channels— Grade 300—Design section moment and shear capacities 5	Table B7	Design moment capacity of bolted/welded single cover plate splice, Universal beam sections < 400 deep, M20 bolts, 6 fillets
Table 3	Welded beams— Grade 300—Design section moment and shear capacities 5	Table B8	to flange plates, 5 fillets to web plates77 Design moment capacity of
Table A1	Summary of design actions from Section 3 19	Tubic Bo	bolted/welded single cover plate splice, Universal beam sections
Table A2	Reduction factor for lap connections (k_r)		> 400 deep, M24 bolts, 8 or 6 fillets to flange plates, 5 fillets
Table A3	Strength limit state 8.8/TB, 8.8/TF bolting categories	Table B9	to web plates78 Design moment capacity of holted worlded three cover plate.
Table A4	Serviceability limit state 8.8/TF bolting category 22		bolted/welded three cover plate splice, Universal column sections, M24 bolts, 6/8 fillets
Table A5	Values of ϕV_{bf} and ϕV_{bi}		to flange plates and 6 fillets
Table A6	Design strengths of cover plates 27		to web plates79
Table A7	Design moment capacity of bolted single cover plate splice— Universal beam sections < 400 deep—M20 bolts 40	Table B10	Design moment capacity of bolted three cover plate splice, 700WB/800WB welded beam sections, M24 bolts, 6/8 fillets
Table A8	Design moment capacity of bolted ingle cover plate splice—	to web plates	to flange plates and 5 fillets to web plates80
T-11- AO	Universal beam sections > 400 deep—M24 bolts 41	Table B11	Design moment capacity of bolted/welded three cover plate splice, 900WB/1000WB welded
bolted three Universal co	Design moment capacity of bolted three cover plate splice— Universal column sections—		beam sections, M24 bolts, 8 or 6 fillets to flange plates and 6 fillets to web plates81
	M24 bolts	Table C1	Summary of design actions
Table A10	Design moment capacity of bolted three cover plate splice 700WB/800WB Welded beam sections—M24 bolts		from Section 386
		Table C2	Design strengths of web cover plates90
Table A11	Design moment capacity of bolted three cover plate splice 900WB/1000WB Welded beam	Table C3	Universal beams—Grade 300—design section moment and shear capacities96
Table B1	Summary of design actions from Section 3 50	Table C4	Welded beams—Grade 300— Design section moment and shear capacities97
Table B2	Reduction factor for lap connections (k_i)	Table C5	Universal columns/welded columns—Grade 300—Design
Table B3	Strength limit state—8.8/TB, 8.8/TF bolting categories 52		section moment and shear capacities98
Table B4	Serviceability limit state— 8.8/TF bolting category 53		

