9 RECOMMENDED DESIGN MODEL 9.4

DESIGN CHECK NO. 4—Design capacity of bolts at tension flange

Design requirement

$$\phi M_{bt} \ge M^* + M_{axial}$$

where: $M^* = \text{design bending moment at connection (defined in Section 7)}$
 $\phi M_{bt} = 2\phi N_{tf} \sum d_i$
 $\phi N_{tf} = \text{design capacity of bolt in tension}$
 $= 163 \text{ kN}$ M20 bolt, 8.8/TB

= 234 kN M24 bolt, 8.8/TB

 $M_{\text{axial}}^* = N_{\text{fr}}^* (d_{\text{b}} - t_{\text{fb}}) \le 0.25 M^*$

- $N_{\rm fr}^*$ = flange force due to tension/shear (defined in Section 7, see Table 2 for relevant equation)
 - = 0 if resultant causes compression

$\sum d_{i} = d_{10} + d_{11}$	4 bolt connection (see Figures 16,17)
$= d_{10} + d_{11} + d_{12} + d_{13}$	8 bolt connection (see Figures 18, 20)
$= d_{10} + d_{11} + d_{12}$	6 bolt connection (see Figure19)

This DESIGN CHECK is based on Reference 6, but reformulated as Reference 6 has an equation that determines bolt diameter rather than the design moment capacity of the bolt group, as given above. Reference 6 also makes no provision for axial force or shear force components causing tension on the bolt group, which are allowed for here in $N_{\rm fr}^*$, via the equations derived in Section 7.

The bolt force model is discussed extensively in Reference 6 and will not be repeated here in detail. The model:

- considers two stages of plate behaviour, thick plate behaviour with no prying forces and thin plate behaviour with maximum prying forces. The threshold between the two behaviours is considered to be the point where bolt prying forces are negligible, and is taken to be when ninety percent of the end plate strength is achieved, based on test results. The recommended design model is based on thick plate behaviour.
- for thick plate behaviour, the bolt forces are determined by taking the static moment of the bolt forces about the centreline of the compression flange;
- each bolt is assumed to reach its design capacity in tension at the same time and because thick plate behaviour is assumed, no prying is required to be considered. Hence, the design moment capacity then becomes the bolt strength at each bolt row multiplied by the lever arm between the bolt centreline and the centreline of the compression flange;
- the underlying assumption is that the outer bolts will yield and deform sufficiently to allow the inner bolts to also develop their full design capacity in tension. The weld to the web is designed to be strong enough for this to occur (refer to DESIGN CHECK NO. 2);
- to ensure thick plate behaviour, there is a requirement that the end plate design capacity in bending be at least 1/0.9 = 1.11 times the design capacity of the bolts in tension (see DESIGN CHECK NO. 6). The difference between thick and thin plate behaviour and the modifications to this DESIGN CHECK for thin plate behaviour are discussed in Appendix A.

• M_{axial}^{*} allows for the fact that design axial tension present (N_{fr}^{*}) reduces the capacity of the bolts at the tension flange to resist the tension due to the design bending moment (M^{*}). The method of allowing for this is to convert the design axial tension component (N_{fr}^{*}) into an equivalent design moment (M_{axial}^{*}) which the bolt group must also resist. This is the method proposed in Reference 18. The limit on M_{axial}^{*} is intended to ensure that the yield line solutions in DESIGN CHECK NO. 6 remain valid. There is no published justification for this limit at this time.

The modifications to this DESIGN CHECK for thin plate behaviour are discussed in Appendix A.

Design Guide 12

Bolted end plate to column moment connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 12 Bolted end plate to column moment connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Hogan, T.J.

Design Guide 12: Bolted end plate to column moment connections

1st ed. Bibliography. ISBN 978 1 921476 14 3 (pbk.). ISBN 978 1 921476 15 0 (pdf.).

- 1. Steel, Structural—Standards–Australia.
- 2. Steel, Structural—Specifications–Australia.
- 3. Joints, (Engineering)—Design and construction.
- I. van der Kreek, N.
- II. Australian Steel Institute.
- III. Title

(Series: Structural steel connection series).

Also in this series:

- Handbook 1: Design of structural steel connections
- Design Guide 1: Bolting in structural steel connections
- Design Guide 2: Welding in structural steel connections
- Design Guide 3: Web side plate connections
- Design Guide 4: Flexible end plate connections
- Design Guide 5: Angle cleat connections
- Design Guide 6: Seated connections
- Design Guide 10: Bolted end plate beam splice connections
- Design Guide 11: Welded beam to column moment connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

This publication originated as part of Design of structural connections First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

CONTENTS

Page

			•
	t of fig t of tal		iv vi
Pre	Preface		
Ab	About the author		viii
Ab	out the	e contributing author	viii
Ac	knowle	edgements	ix
1	CON(CEPT OF DESIGN GUIDES Background	1 1
2		CRIPTION OF CONNECTION	
2			
3	TYPIC	CAL DETAILING OF CONNECTION	5
4	DETA	ILING CONSIDERATIONS	9
5	AS 41	00 REQUIREMENTS	12
6	BASIS	S OF DESIGN MODEL	13
7		ULATION OF DESIGN ACTIONS	
			10
8		OMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	21
9	RECO	DMMENDED DESIGN MODEL	26
	9.1	DESIGN CHECK NO. 1—Detailing	
		requirements	26
	9.2	DESIGN CHECK NO. 2—Design	~~
	9.3	capacity of flange welds to beam DESIGN CHECK NO. 3—Design	28
	9.5	capacity of web welds to beam	29
	9.4	DESIGN CHECK NO. 4—Design	25
	0.1	capacity of bolts at tension flange	31
	9.5	DESIGN CHECK NO. 5—Design	•
		capacity of bolts in shear	33
	9.6	DESIGN CHECK NO. 6—Design	
		capacity of end plate at	
		tension flange	34
	9.7	DESIGN CHECK NO. 7—Design	20
	9.8	capacity of end plate in shear DESIGN CHECK NO. 8—Design	38
	9.0	requirements for stiffener to	
		end plate	39
	9.9	DESIGN CHECK NO. 9—Design	00
		capacity of stiffener welds to	
		end plate	40
10	RECO	DMMENDED DESIGN MODEL	
		IFFENED COLUMN	41
	10.1	DESIGN CHECK NO. 10-Local	
		bending of column flange at beam	
		tension flange	41
	10.2	DESIGN CHECK NO. 11-Local	
		yielding of column web at beam	
	10.2	tension flange DESIGN CHECK NO. 12—Local	44
	10.3	yielding of column web at beam	
		compression flange	45
	10.4	DESIGN CHECK NO. 13—	.0
		Column web crippling at beam	
		compression flange	47
		-	

NI	S		
			ige
	10.5	DESIGN CHECK NO. 14—Column web compression buckling	49
	10.6	DESIGN CHECK NO. 15—Column	49
		web panel in shear	50
11	RECC	MMENDED DESIGN MODEL	
		IMNS WITH DOUBLER PLATES	.51
	11.1	DESIGN CHECK NO. 16-Local	
		bending of column flange with	
		flange doubler plates at beam tension flange	51
	11.2	DESIGN CHECK NO. 17—Local	01
		yielding of column web with doubler	
		plate(s) at beam tension flange	52
	11.3	DESIGN CHECK NO. 18-Local	
		yielding of column web with doubler plate(s) at beam compression	
		flange	54
	11.4	DESIGN CHECK NO. 19-Crippling	I
		of column web with doubler plate(s)	
		at beam compression flange DESIGN CHECK NO. 20—	55
	11.5	Compression buckling of column	
		web with doubler plate(s)	57
	11.6	DESIGN CHECK NO. 21—Column	•
		web panel with doubler plate(s) in	
		shear	59
12		DMMENDED DESIGN MODEL—	
		IMNS WITH TRANSVERSE	61
	511FF 12.1	DESIGN CHECK NO. 22—Column	01
	12.1	with transverse stiffeners at tension	
		flange	61
	12.2	DESIGN CHECK NO. 23-Column	
		with transverse stiffeners at	CE.
	12.3	compression flange DESIGN CHECK NO. 24—Column	65
	12.0	with transverse diagonal shear	
		stiffeners	67
13	ADDI	TIONAL CONSIDERATIONS	.69
14	ECON	OMICAL CONSIDERATIONS	70
15	DESI	GN EXAMPLE	71
	15.1	Design example—Four bolt	
		unstiffened end plate to column	
		connection	71
16	REFE	RENCES	79
17	DESI	GN CAPACITY TABLES	80
	17.1		81
	17.2	Four bolt stiffened end plate	85
	17.3 17 4	Six bolt unstiffened end plate Eight bolt stiffened end plate	87 89
			00
AP	PEND A	Thick and thin end plate behaviour	90
	B	Limcon software	90 92
	C	ASI Design Guide 12	
		comment form	97
de '	12:		

iii

#

LIST OF FIGURES

Page

Figure 1	Bolted end plate to column moment connections
Figure 2	Forms of extended end plate connection 3
Figure 3	Possible configurations of the bolted moment end plate beam to column connection
Figure 4A	Typical detailing for 4 bolt unstiffened bolted end plate to column connection
Figure 4B	Typical detailing for haunched rafter to column bolted end plate connection
Figure 5	Removal of column flange with thicker plate inserted
Figure 6	Column doubler plate types
Figure 7	Column transverse stiffener types 8
Figure 8	Shims used between end plate and column flange
Figure 9	Stiffener detailing 10
Figure 10	Clearance required for tensioning bolts 11
Figure 11	Design actions on beam at column
Figure 12	Calculation of flange forces due to bending moment and axial force—horizontal beam
Figure 13	Calculation of force components where beam is inclined to column in upwards direction
Figure 14	Calculation of force components where beam is inclined to column in downwards direction
Figure 15	Alternative stress distributions in beam
Figure 16	Notation used for 4 bolt (2/2) unstiffened end plate
Figure 17	Notation used for 4 bolt (2/2) stiffened end plate
Figure 18	Notation used for 8 bolt (4/4) stiffened end plate 22
Figure 19	Notation used for 6 bolt (2/4) unstiffened end plate
Figure 20	Notation used for 8 bolt (2/6) unstiffened end plate
Figure 21	Summary of design check locations on column
Figure 22	Column and beam dimensions used in design model
Figure 23	Stiff bearing dimension <i>b</i> _{sc} used in design model

Figure 24	Clearance dimensions $a_{\rm f}$ and $s_{\rm po}27$
Figure 25	End plate stiffener detailing27
Figure 26	Flange weld design actions28
Figure 27	Web weld design actions
-	Yield line pattern 4 bolt (2/2)
90.0 20	unstiffened end plate
Figure 29	Yield line pattern 4 bolt (2/2)
Ū	stiffened end plate
Figure 30	Yield line pattern 6 bolt (2/4)
-	unstiffened end plate
Figure 31	Yield line pattern 8 bolt (2/6)
	unstiffened end plate
Figure 32	Yield line pattern 8 bolt (4/4)
	stiffened end plate37
Figure 33	Yield line pattern 4 bolt (2/2)
	end plate to unstiffened column
E :	flange
Figure 34	Yield line pattern 2/4(6) bolt end plate to unstiffened
	column flange
Figure 35	Yield line pattern 2/6(8) bolt
r igure oo	end plate to unstiffened column
	flange
Figure 36	Yield line pattern 4/4(8) bolt
0	end plate to unstiffened column
	flange43
Figure 37	Flange removed with new plate
riguic or	
-	inserted43
-	inserted43 Application of <i>c</i> t term—Column
-	inserted43 Application of c_t term—Column web yielding at beam tension
Figure 38	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44
-	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam
Figure 38	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam
Figure 38 Figure 39	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45
Figure 38 Figure 39	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam
Figure 38 Figure 39 Figure 40	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246
Figure 38 Figure 39 Figure 40	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in
Figure 38 Figure 39 Figure 40 Figure 41	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43	inserted43 Application of ct term—Column web yielding at beam tension flange44 Application of ct term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44	inserted43 Application of <i>c</i> t term—Column web yielding at beam tension flange44 Application of <i>c</i> t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50 Column flange doubler plate details at beam tension flange51 Column web doubler plate
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50 Column flange doubler plate details at beam tension flange51
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50 Column flange doubler plate details at beam tension flange53 Column web doubler plate
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50 Column flange doubler plate details at beam tension flange51 Column web doubler plate details at beam tension flange53 Column web doubler plate details at beam compression flange53
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47	inserted
Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48	inserted43 Application of <i>c</i> _t term—Column web yielding at beam tension flange44 Application of <i>c</i> _t term—Column web yielding at beam compression flange45 Angle of dispersion used in DESIGN CHECK NO. 1246 Dispersion arrangement used in DESIGN CHECK NO. 1446 Case I arrangement47 Case II and case III arrangement47 Examples of web panel shear conditions50 Column flange doubler plate details at beam tension flange51 Column web doubler plate details at beam tension flange53 Column web doubler plate details at beam compression flange53

Figure 50 Case II and case III arrangement . 55	5
Figure 51 Column web doubler plate details at beam compression flange 56	5
Figure 52 Column web doubler plate details at beam compression flange 58	3
Figure 53 Column web doubler plate details for shear)
Figure 54 Tension stiffener arrangement 62	2
Figure 55 Yield line pattern 4 bolt (2/2) end plate to stiffened column flange 63	3
Figure 56 Yield line pattern 2/4 (6) bolt unstiffened end plate to stiffened column flange	3
Figure 57 Yield line pattern 2/6 (8) bolt unstiffened end plate to stiffened column flange	ŀ
Figure 58 Yield line pattern 4/4 (8) bolt stiffened end plate to stiffened column flange	Ļ
Figure 59 Compression stiffener details 65	5

Figure 60	Diagonal shear stiffener	
i iguie oo	arrangements	68
Figure 61	Transverse stiffener options when beam flanges are offset due to unequal beam depths	69
Figure 62	Bolted end plate to column example	71
Figure 63	Stress distribution in beam due to $M^* = 210 \text{ kNm}$	72
Figure 64	Alternative solution no. 1— Replacement flange plate inserted into column at beam tension flange plus web	
	doubler plate	"
Figure 65	Alternative solution no. 2—Flange doubler plates at beam tension flange plus web doubler plate	77
Figure 66	Alternative solution no. 3—Flange doubler plates and transverse stiffeners at beam tension flange	

Figure 67 End plate behaviour idealisation....90

v

LIST OF TABLES

Page

Table 1 Range of tested parameters 14 Equations to be applied for Table 2 different configurations and connection elements...... 20 Table 3 Recommended limits on parameters 26 Table 4 Strength of plate to AS 3678-Grade 250 35 Table 5 Strength of flat bars to AS 3679.1—Grade 300 39 Table 6 Stiffener material strengths...... 62 Table 7 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate-M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam sections > 300 mm deep 81 Table 8 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate-M20 bolts 8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 200 mm deep 82 Table 9 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate-M24 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 300 mm deep 83 Table 10 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate-M20 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 200 mm deep 84

Table 11 Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate-M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam sections > 300 mm deep85 Table 12 Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate-M20 bolts 8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 200 mm deep86 Table 13 Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate-M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam sections > 450 mm deep87 Table 14 Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate-M20 bolts 8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 350 mm deep88

Table 15Design moment capacity of
connection ϕM_{conn} —Eight bolt
stiffened end plate—M24 bolts
8.8/TB Category threads included
in shear plane—Unhaunched
welded beam and universal
beam sections > 520 mm deep89

Page