8 RECOMMENDED DESIGN MODEL—SUMMARY OF DESIGN CHECKS

Summary of design checks—

- 9.1 DESIGN CHECK NO. 1 Detailing requirements
- 9.2 DESIGN CHECK NO. 2 Design capacity of welds to beam flanges
- 9.3 DESIGN CHECK NO. 3 Design capacity of welds to beam web
- 9.4 DESIGN CHECK NO. 4 Design capacity of bolts at tension flange
- 9.5 DESIGN CHECK NO. 5 Design capacity of bolts in shear
- 9.6 DESIGN CHECK NO. 6 Design capacity of end plate at tension flange
- 9.7 DESIGN CHECK NO. 7 Design capacity of end plate in shear
- 9.8 DESIGN CHECK NO. 8 Design requirements for stiffener to end plate
- 9.9 DESIGN CHECK NO. 9 Design capacity of stiffener welds to end plate

DESIGN GUIDE 10

Bolted moment end plate beam splice connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 10 Bolted moment end plate beam splice connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 10: Bolted moment end plate beam splice connections

1st ed. Bibliography. ISBN 978 1 921476 10 5 (pbk.). ISBN 978 1 921476 11 2 (pdf.).

- 1. Steel, Structural—Standards Australia.
- 2. Steel, Structural—Specifications Australia.
- 3. Joints, (Engineering)—Design and construction.
- I. van der Kreek, N.
- II. Australian Steel Institute.
- III. Title

(Series: Structural steel connection series).

Also in this series:

Handbook 1: Design of structural steel connections

- Design Guide 1: Bolting in structural steel connections
- Design Guide 2: Welding in structural steel connections
- Design Guide 3: Web side plate connections
- Design Guide 4: Flexible end plate connections
- Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

- Design Guide 11: Welded beam to column moment connections
- Design Guide 12: Bolted end plate beam to column moment connections

Design Guide 13: Splice connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

This publication originated as part of Design of structural connections First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

CONTENTS

Page

Lis Pre Ab Ab Ac	List of figuresivList of tablesvPrefaceviAbout the authorviiAbout the contributing authorviiAcknowledgementsviii			
1	CON(1.1	CEPT OF DESIGN GUIDES Background	1 1	
2	DESC	CRIPTION OF CONNECTION	2	
3	TYPI	CAL DETAILING OF CONNECTION	4	
4	DETA	ALLING CONSIDERATIONS	6	
5	AS 41	100 REQUIREMENTS	8	
6	BASI	S OF DESIGN MODEL	9	
7	CALC	ULATION OF DESIGN ACTIONS	11	
8	RECO SUMI	OMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	17	
9	REC0 9.1	OMMENDED DESIGN MODEL DESIGN CHECK NO. 1—Detailing	20	
	9.2	requirements DESIGN CHECK NO. 2—Design	20	
	0.0	capacity of welds to beam flanges	22	
	9.3	capacity of welds to beam web	23	
	9.4	DESIGN CHECK NO. 4—Design	05	
		capacity of bolts at tension flange	25	

	9.5 9.6	DESIGN CHECK NO. 5—Design capacity of bolts in shear DESIGN CHECK NO. 6—Design	26
	0.7	capacity of end plate at tension flange	27
	9.7	capacity of end plate in shear	31
	9.8	DESIGN CHECK NO. 8—Design requirements for stiffener to	-
	9.9	end plate DESIGN CHECK NO. 9—Design	32
		end plate	33
10	DESI 10.1	GN EXAMPLES Design example No. 1—Four bolt	.34
	10.2	unstiffened end plate beam splice Design example No. 2—Four bolt stiffened apex connection	34 37
11	REFE		۵ <i>1</i>
• •			
12	DESI 12.1 12.2 12.3 12.4	GN CAPACITY TABLES Four bolt unstiffened end plate Four bolt stiffened end plate Six bolt unstiffened end plate Eight bolt stiffened end plate	.42 43 45 47 49
APPENDICES			
	A B	Thick and thin end plate behaviour Limcon software	50 52

Page

C ASI Design Guide 10 comment form 59

LIST OF FIGURES

Page

Bolted moment end plate beam splice connection
Forms of extended bolted end plate connection
Typical detailing for unstiffened variations of extended bolted moment end plate
Typical detailing for stiffened variations of extended bolted moment end plate
Shims used between end plates 6
Clearance required for tensioning bolts
Design actions at connection 11
Calculation of flange force due to bending moment and axial force— Horizontal beam
Calculation of force components— Apex connection
Calculation of force components— Mitred knee connection
Alternative stress distributions in beam
Notation used for 4 bolt (2/2) unstiffened end plate
Notation used for 4 bolt (2/2) stiffened end plate
Notation used for 8 bolt (4/4) stiffened end plate 18

Figure 15 Notation used for 6 bolt (2/4) unstiffened end plate	.19
Figure 16 Notation used for 8 bolt (2/6) unstiffened end plate	.19
Figure 17 Clearance dimensions <i>a</i> _f , <i>a</i> _e , <i>s</i> _{po}	.21
Figure 18 End plate stiffener detailing	.21
Figure 19 Flange weld design actions	.22
Figure 20 Web weld design actions	.24
Figure 21 Yield line pattern 4 bolt (2/2) unstiffened end plate	.27
Figure 22 Yield line pattern 4 bolt (2/2) stiffened end plate	.28
Figure 23 Yield line pattern 6 bolt (2/4) unstiffened end plate	.29
Figure 24 Yield line pattern 8 bolt (2/6) unstiffened end plate	.29
Figure 25 Yield line pattern 8 bolt (4/4) stiffened end plate	.30
Figure 26 Beam splice example no. 1	.34
Figure 27 Stress distribution in beam of example no. 1	.35
Figure 28 Apex end plate example no. 2	.37
Figure 29 Stress distribution in rafter for example no. 2	.38
Figure 30 Stiffener detailing example no. 2	.40
Figure 31 End plate behaviour idealisation	.50

Page

LIST OF TABLES

Page

Table 1	Range of tested parameters (Ref. 6) 10
Table 2	Equations to be applied for different configurations and connection elements
Table 3	Recommended limits on detailing parameters
Table 4	Strength of plate to AS 3678 Grade 250 28
Table 5	Strength of flat bars to AS 3679.1 Grade 300 32
Table 6	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane—Welded beam/Universal beam sections > 300 mm deep
Table 7	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane—Universal beam sections > 200 mm deep 44
Table 8	Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane— Welded beam/Universal beam sections > 300 mm deep

Table 9	Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane— Universal beam sections > 200 mm deep46
Table 10	Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane— Welded beam/Universal beam sections > 450 mm deep47
Table 11	Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane—Universal beam sections > 350 mm deep
Table 12	Design moment capacity of connection ϕM_{conn} —Eight bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane—Welded beam and universal beam sections > 520 mm deep

Page

v