4 Frame Design

4.1 FRAME DESIGN BY ELASTIC ANALYSIS

Traditionally, portal frame analysis and design in Australia has been elastic rather than plastic. Although AS 4100 [1] is a limit states code with section and member capacities based on the plastic moment of resistance, the main method in the code for determining the forces and bending moments in a frame is still elastic analysis whether linear or non-linear. Plastic analysis may lead to more economical structures in some cases but the availability of plastic design software is limited. By contrast, design software for elastic design has continually evolved and is now very user-friendly. There is also the added complication of the nonuniform, asymmetric nature of the wind load which makes plastic design even more difficult. Hence plastic design tends to be very labour intensive and elastic analysis is needed anyway to calculate deflections. Methods of plastic design were demonstrated in previous editions of this book.

In the Australian wind code AS/NZS 1170.2 [2], coefficients for external pressures, unless the roof pitch is 10° or greater, or h/d is greater than 0.5, decrease in steps starting from -0.9 at the windward edge to -0.5 to -0.3 to -0.2, or alternatively from -0.4 to 0, +0.1 and +0.2. For transverse wind cases, this non-uniform pressure can be handled easily by an elastic analysis using a plane frame computer program. In fact, it would be extremely difficult to take advantage of the reduction in pressure and achieve an economical structure without recourse to a plane frame computer program.

In the design of rafters and columns in portal frames, the selection of the member sizes may be governed by the ultimate *strength limit state*, or by limiting deflections in the *serviceability limit state*. For the strength limit state, the design axial and bending capacities ϕN_c and ϕM_{bx} respectively are obtained through a consideration of flexural and flexural-torsional buckling respectively.

To obtain an economical rafter design, it is important to ensure that the design bending strength is as close as possible to the section capacity ϕM_{sx} , which for many sections will be the plastic moment capacity ϕSf_y . This capacity is usually achieved by the use of adequate restraints such as fly braces to restrain the inside rafter and column flanges laterally when in compression. Of course, there are some cases where deflections govern the design, and these are discussed in Section 4.9 of this chapter.

4.2 COMPUTER ANALYSIS

4.2.1 Load Cases

For computer analysis, using load cases which are complete in themselves is recommended. For example, internal pressure should be a load case by itself, and not combined with an external pressure case. The loads on columns and rafters should not be separated. Recommended load cases for a computer analysis are as follows:

- 1. Dead Load (DL) or (G)
- 2. Live Load (LL) or (Q)
- 3. Transverse Wind Maximum Uplift (TW1) (external only)
- 4. Transverse Wind Minimum Uplift (TW2) (external only)
- 5. Longitudinal Wind on First Internal Frame (LW1) (external only)
- 6. Longitudinal Wind on Downwind Frame (LW2) (external only)
- 7. Internal Pressure under Transverse Wind (IPTW)
- 8. Internal Pressure under Longitudinal Wind (IPLW)
- 9. Internal Suction under Transverse Wind (ISTW)
- 10. Internal Suction under Longitudinal Wind (ISLW)

Extra load cases may be necessary for non-symmetrical buildings, for buildings where the transverse wind terrain category is different on one side from the other, and for buildings where it may be an advantage to consider different wind speeds in different directions. Transverse wind load combinations with internal suction are not often critical, but designers should check such combinations nevertheless. It is possible that the hogging moment at the downwind knee joint will be worse under dead load, transverse wind and internal suction (1.2DL + TW + IS) than under dead load plus live load (1.2DL + 1.5LL). This particularly affects the downwind column as its unrestrained inside flange will be in compression. The internal suction case (IS) can be obtained simply by factoring the internal pressure load case by an appropriate negative number but the design example in this book uses separate load cases for internal suction.

The recommended load combinations for a computer analysis are:

- LC20: 1.2DL + 1.5LL
- LC21: 0.9DL + TW1 (maximum uplift) + IPTW
- LC22: 0.9DL + TW2 (minimum uplift) + IPTW
- LC23: 1.2DL + TW2 (minimum uplift) + ISTW
- LC24: 0.9DL + LW1 (maximum uplift) + IPLW
- LC25: 1.20DL + LW2 (minimum uplift) + ISLW

Note that the loading code AS/NZS 1170.0 [3] states that it is not necessary to consider live load and wind load acting simultaneously.

The distribution of bending moment will not vary much from the trial to the final section properties provided that the ratio of trial column and rafter second moments of area is similar to that finally adopted. Some computer programs allow for shear deformations, although the effect is not significant. To account for shear deformations in Microstran, the web area must be input. The web area can be taken as the overall depth D times the web thickness t_w .

4.2.2 Methods of Analysis

AS 4100 permits a number of types of analysis consisting of first and second order elastic analysis, first and second order plastic analysis and advanced structural analysis. First and second order *elastic* analysis are covered in this chapter.

First order elastic analysis assumes the frame remains elastic and that its deflections are so small that secondary effects resulting from the deflections (second order effects) are negligible. First order analysis is generally carried out using plane frame analysis computer programs. Despite the basic assumption of first order analysis, second order effects are not negligible. Second order effects are essentially $P-\Delta$ effects which arise from the sway Δ of

Design of Portal Frame Buildings

including Crane Runway Beams and Monorails

Fourth Edition

S.T. Woolcock

Director, Bonacci Group Consulting Engineers

S. Kitipornchai

Honorary Professor, School of Civil Engineering The University of Queensland

M.A. Bradford

Scientia Professor of Civil Engineering The University of New South Wales

G.A. Haddad

Associate, Bonacci Group Consulting Engineers

Published by Australian Steel Institute Level 13, 99 Mount Street North Sydney NSW 2060 www.steel.org.au

DESIGN OF PORTAL FRAME BUILDINGS including Crane Runway Beams and Monorails

Published by AUSTRALIAN STEEL INSTITUTE

Enquiries should be addressed to the publisher:

Business address – Level 13, 99 Mount Street, North Sydney, NSW 2060 Australia Postal address – P.O. Box 6366, North Sydney, NSW 2059 Australia Email address – enquiries@steel.org.au Website – www.steel.org.au

© Copyright 2011 Australian Steel Institute

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the Australian Steel Institute.

Previously published as:

Design of Portal Frame Buildings, 1st edition, 1987 (to AS 1250) Limit State Design of Portal Frame Buildings, 1st edition, 1991 (to AS 4100) Limit State Design of Portal Frame Buildings, 2nd edition, 1993 (to AS 4100) Design of Portal Frame Buildings, 3rd edition, 1999 (to AS 4100) Design of Portal Frame Buildings, 3rd edition, 2003 (reprint with ASI)

National Library of Australia Cataloguing-in-Publication entry:

Design of portal frame buildings: including crane runway beams and monorails/ S.T. Woolcock ... [et al.]

4th ed. ISBN 9781921476266 (pbk.) Includes bibliographical references and index.

Industrial buildings – Design and construction. Building, Iron and steel – Design and construction. Woolcock, S.T. Australian Steel Institute.

693.71

DISCLAIMER

Every effort has been made and all reasonable care taken to ensure the accuracy of the material contained in the Publication. However, to the extent permitted by law, the Authors, Editors and Publishers of the Publication:

- (a) will not be held liable or responsible in any way; and
- (b) expressly disclaim any liability or responsibility,

for any loss, damage, costs or expenses incurred in connection with this Publication by any person, whether that person is the purchaser of this Publication or not. Without limitation, this includes loss, damage, costs and expenses incurred if any person wholly or partially relies on any part of this Publication, and loss, damage, costs and expenses incurred as a result of the negligence of the Authors, Editors or Publishers.

WARNING

This Publication should not be used without the services of a competent professional person with expert knowledge in the relevant field, and under no circumstances should this Publication be relied upon to replace any or all of the knowledge and expertise of such a person.

Contents

CON	FENTS			i				
Pref	ACE			ix				
Not	ATION			xi				
1	Intr	ODUCTI	ON	1				
	1.1	Key Fea	atures of Portal Framed Buildings	1				
	1.2	Design	6	3				
		1.2.1	General Design Criteria	3				
		1.2.2	Structural Design	3				
			1.2.2.1 Introduction	3				
			1.2.2.2 Grey Areas in Design	4				
			1.2.2.3 Aims of This Book	7				
	1.3	Limit S	tates Design	7				
		1.3.1	Background	7				
		1.3.2	Design for the Strength Limit State	8				
		1.3.3	Design for the Serviceability Limit State	9				
	1.4	0	Examples	9				
		1.4.1	Building	9				
		1.4.2	Crane Runway Beams	11				
		1.4.3	Monorails	11				
	1.5	Referen	ices	12				
2	LOA	DS		15				
	2.1	Backgro	Background 15					
	2.2	Dead L	Dead Loads 15					
	2.3	Live Lo	oads	16				
	2.4	Wind L	oads	16				
		2.4.1	Regional Wind Speed	16				
		2.4.2	Site Wind Speeds	17				
		2.4.3	Terrain Category	18				
		2.4.4	Design Wind Speeds and Pressures	19				
		2.4.5	External Pressures	21				
		2.4.6	Internal Pressures	21				
		2.4.7	Area Reduction Factor (K_a)	24				
		2.4.8	Action Combination Factor (K_c)	24				
	a -	2.4.9	Local Pressure Factors (K_l)	25				
	2.5	Seismic		26				
	2.6		ombinations	27				
		2.6.1	Strength Limit State	27				
	2.7	2.6.2	Serviceability Limit State	28 28				
	2.7	2.7.1	Example - Loads Dead Loads	28 28				
		2.7.1	Live Loads	28 29				
		2.7.2	Wind Loads	29				
		2.1.5	2.7.3.1 Basic Wind Data	29				
			2.7.3.2 External Wind Pressures	31				
			2.7.3.3 Internal Wind Pressures	33				
			2.7.3.4 Peak Local Pressures	35				
		2.7.4	Seismic Loads	36				
		2.7.5	Load Cases for Portal Frames	37				
		2.7.6	Load Combinations	41				
	2.8	Referen	ices	42				

3	PURI	LINS & G	JIRTS	43		
	3.1					
	3.2	Roof and	d Wall Sheeting	44		
		3.2.1	Rainwater and Temperature	44		
		3.2.2	Cladding Capacity	44 45		
	3.3	Purlin Spans or Frame Spacing				
	3.4	Loads		45		
		3.4.1	Base Loads	45		
		3.4.2	Peak Local Pressures	46		
			3.4.2.1 Summary of Code Provisions	46		
			3.4.2.2 Aspect Ratio of Patches	47		
			3.4.2.3 Contributing Widths	53		
		3.4.3	Equivalent UDL's For Peak Pressure	54		
	3.5	Member	Capacities	57		
		3.5.1	Manufacturers' Brochures	57		
			3.5.1.1 Design Capacity Tables	57		
			3.5.1.2 Bridging	57		
		3.5.2	Manufacturers' Software	58		
		3.5.3	R-Factor Method	58		
		3.5.4	Stramit Method	58		
	3.6	Deflection	ons	59		
	3.7	Axial Lo	bads	59		
	3.8	Purlin ar	nd Girt Cleats	59		
	3.9	Purlin ar	nd Girt Bolts	60		
	3.10	Design H	Example – Purlins	60		
		3.10.1	Methodology	60		
		3.10.2	Select Purlin Spacing	61		
		3.10.3	Outward Purlin Loading – Transverse Wind	62		
			3.10.3.1 General	62		
			3.10.3.2 Edge Zone 0 to 2600 mm from Eaves (TW- Excluding Fascia purlin)	62		
			3.10.3.3 Fascia Purlin (Edge Zone 0 to 2600 mm from Eaves - TW)	69		
			3.10.3.4 Edge Zone 2600 mm to 5200 mm from Eaves (TW)	72		
			3.10.3.5 Zone 5200 mm to 8350 mm from Eaves (TW)	72		
			3.10.3.6 Zone between 8350 mm from Eaves and the Ridge (TW)	73		
		3.10.4	Outward Purlin Loading – Longitudinal Wind	73		
			3.10.4.1 Edge Zone 0 to 5200 mm from Eaves (LW)	73		
			3.10.4.2 Zone between 5200 mm from Eaves and the Ridge (LW)	76		
		3.10.5	Check Inward Loading	80		
			3.10.5.1 Zone 0 to 5200 mm from Eaves (LW)	80		
			3.10.5.2 Zone between 5200 mm from Eaves and the Ridge (LW)	80		
		3.10.6	Using Manufacturers' Software	81		
		3.10.7	R-Factor Method	81		
		3.10.8	Purlin Summary	83		
	3.11	Design H	Example – Girts	84		
		3.11.1	Long Wall Girts	84		
			3.11.1.1 Coefficients & Girt Spacing	84		
			3.11.1.2 Outward Loading	84		
			3.11.1.3 Inward Loading	88		
		3.11.2	End Wall Girts with Span of 6250 mm	90		
			3.11.2.1 Coefficients and Girt Spacing	90		
			3.11.2.2 Outward Loading	90		
			3.11.2.3 Inward Loading with 1700 mm Spacing	91		
		3.11.3	Girt Summary	93		
	3.12	Reference	ces	94		

4	Fra	ME DESI	GN	
•	4.1		Design by Elastic Analysis	
	4.2	Comput	er Analysis	95 95
	7.2	4.2.1	Load Cases	95 95
		4.2.2	Methods of Analysis	96
		4.2.3	Moment Amplification for First Order Elastic Analysis	97
	4.3	Rafters	Woment Amphilieation for Thist Order Elastic Analysis	98
	4.5	4.3.1	Nominal Bending Capacity M _{bx} in Rafters	98
		4.3.1	4.3.1.1 Simplified Procedure	98
			4.3.1.2 Alternative Procedure	98 99
		4.3.2	Effective Length and Moment Modification Factors for Bending Capacity	100
		4.3.2	4.3.2.1 General	100
			4.3.2.2 Top Flange in Compression	100
			4.3.2.3 Bottom Flange in Compression	100
		4.3.3	Major Axis Compression Capacity N_{cx}	101
		4.3.4	Major Axis Compression Capacity N_{cx} Minor Axis Compression Capacity N_{cy}	103
		4.3.5	Combined Actions for Rafters	104
		4.3.6	Haunches for Rafters	104
	4.4	Portal C		104
	7.7	4.4.1	General	104
		4.4.2	Major Axis Compression Capacity N_{cx}	104
		4.4.3	Minor Axis Compression Capacity N_{cv}	105
		4.4.4	Nominal Bending Capacity $M_{\rm bx}$ in Columns	105
		7.7.7	4.4.4.1 General	105
			4.4.4.2 Inside Flange in Compression	105
			4.4.4.3 Outside Flange in Compression	105
	4.5	Combin	ed Actions	106
	1.0	4.5.1	General	106
		4.5.2	In-Plane Capacity	106
			4.5.2.1 In-Plane Section Capacity	106
			4.5.2.2 In-Plane Member Capacity	107
		4.5.3	Out-of-Plane Capacity	108
		1.0.0	4.5.3.1 Compression Members	108
			4.5.3.2 Tension Members	108
	4.6	Central	Columns	108
		4.6.1	General	108
		4.6.2	Effective Lengths for Axial Compression	109
			4.6.2.1 Top Connection Pinned	109
			4.6.2.2 Top Connection Rigid	110
		4.6.3	Combined Actions with First Order Elastic Analysis	110
		4.6.4	Combined Actions with Second Order Elastic Analysis	110
	4.7	End Wa	ll Frames	110
		4.7.1	General	110
		4.7.2	End Wall Columns	111
		4.7.3	End Wall Columns to Rafter Connection	111
			4.7.3.1 General	111
			4.7.3.2 Continuous Rafter	111
			4.7.3.3 Discontinuous Rafter	112
	4.8	Rafter B	Bracing Design	113
		4.8.1	General	113
		4.8.2	Purlins as Braces	113
			4.8.2.1 AS 4100 Approach	113
			4.8.2.2 Eurocode Approach	114
			4.8.2.3 Conclusions	117
		4.8.3	Fly Braces	117
			4.8.3.1 General	117
			4.8.3.2 AS 4100 Approach	119
			4.8.3.3 Eurocode Approach	120

4.9	Deflection	ons		120		
	4.9.1	General		120		
	4.9.2	Problems	s of Excessive Deflection	121		
4.10	Design I	Example – I	Frame Design	124		
	4.10.1	Frame A	nalysis	124		
			Preliminary Design	124		
		4.10.1.2	Haunch Properties	125		
		4.10.1.3	Methods of Analysis	126		
	4.10.2	Frame D	eflections	127		
		4.10.2.1	Sidesway Deflection	127		
		4.10.2.2	Rafter Deflection	127		
	4.10.3	Columns	s (460UB74)	127		
		4.10.3.1	Column Section Capacities	127		
		4.10.3.2	Column Member Capacities	128		
		4.10.3.3	Column Combined Actions	128		
	4.10.4		360UB45)	132		
			Rafter Section Capacities	132		
			Rafter Member Capacities	133		
			Rafter Combined Actions	134		
	4.10.5	LIMSTE	EL Results	145		
	4.10.6	End Wal	l Frames	145		
	4.10.7		l Columns	145		
		4.10.7.1	Inside Flange in Tension (Inward Loading)	145		
			Inside Flange in Compression (Outward Loading)	147		
		4.10.7.3		148		
.10	Reference	ces	1	149		
Envi	Con	TOTIONS		151		
		NECTIONS				
5.1	General		1 T	151		
5.2		Inee and Ri	lage Joints	152		
5.3	Column		Down Dolto	154		
	5.3.1		Down Bolts	154		
- 4	5.3.2	Base Pla		155 155		
5.4		6 1				
	5.4.1	General		155		
	5.4.2	Knee Joi		156		
		5.4.2.1	General	156		
		5.4.2.2	Calculate Design Actions	157		
		5.4.2.3	Bottom Flange Connection	163		
		5.4.2.4	Top Flange Connection	185		
		5.4.2.5	Summary of Adopted Knee Connection Details	197		
	5.4.3		onnection	197		
		5.4.3.1	General	197		
		5.4.3.2	Calculate Design Actions	198		
		5.4.3.3	Carry Out Design Checks	200		
		5.4.3.4	Summary of Adopted Ridge Joint Details	205		
	5.4.4	Base Pla		206		
	5.4.5	End Wal	l Column Connections	211		
		5.4.5.1	General	211		
		5.4.5.2	Centre Column - Top Connection	211		
		5.4.5.3	Quarter-Point Columns – Top Connection	213		
5.5	Reference	ces		214		
200	E & W/ .	I BRACE	NG			
	F & W AI General	LL DKACI	NG			
6.1 6.2		Procedure		215		
0.4	LICCHOIL	rioceuule		∠10		

6.3	Roof and	l Wall Brac	ing Forces	216		
	6.3.1	Longitud	inal Wind Forces	216		
	6.3.2	Rafter or	Truss Bracing Forces	216		
		6.3.2.1	General	216		
		6.3.2.2	Quantifying Bracing Forces	217		
6.4	Bracing			219		
6.5	Bracing	2		221		
6.6	Tension			223		
6.7		d Angles ir		226 229		
6.8	Tubes in Compression					
6.9			r Struts and Ties	231		
	6.9.1	Tubes		231		
		6.9.1.1	Tubes in Tension	231		
		6.9.1.2	Tubes in Compression	233		
< 1 Q	6.9.2	Angles		235		
6.10			y of Connection	235		
6.11			oof and Wall Bracing	235		
	6.11.1	0	inal Forces	235		
		6.11.1.1		235		
			Forces due to Longitudinal Wind	236		
			Forces due to Rafter Bracing	238		
	6110		Forces in Roof Bracing Members	238		
	6.11.2		ension Diagonals	238		
	6.11.3 6.11.4	Struts Connection	200	241 244		
	0.11.4	6.11.4.1	End Connections for Struts	244 244		
		6.11.4.1		244 246		
	6.11.5	Side Wal		240		
6.12	Referenc		Diaeing	268		
0.12	Reference	03				
		SLABS				
7.1	General			269		
7.2	Design U	Jplift Force	S	270		
7.3		.*				
	Pad Foot	0		270		
7.4	Bored Pi	ers		270 271		
	Bored Pi 7.4.1	ers General		270 271 271		
	Bored Pi 7.4.1 7.4.2	ers General Resistanc	e to Vertical Loads	270 271 271 271 273		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3	ers General Resistanc Resistanc	e to Lateral Loads	270 271 271 273 274		
	Bored Pi 7.4.1 7.4.2 7.4.3 Holding	ers General Resistanc Resistanc Down Bolt	e to Lateral Loads	270 271 271 273 274 275		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1	ers General Resistanc Resistanc Down Bolt General	e to Lateral Loads s	270 271 271 273 274 275 275		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2	General General Resistanc Resistanc Down Bolt General Design C	e to Lateral Loads s riteria	270 271 271 273 274 275 275 275 276		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3	General Resistanc Resistanc Down Bolt General Design C Grouting	e to Lateral Loads s riteria or Bedding	270 271 271 273 274 275 275 275 276 277		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T	e to Lateral Loads s riteria or Bedding `ension	270 271 271 273 274 275 275 275 276 277 277		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in 7 7.5.4.1	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars	270 271 271 273 274 275 275 275 276 277 277 277		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars Cone Failure	270 271 271 273 274 275 275 275 276 277 277 277 278		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths	270 271 271 273 274 275 275 276 277 277 277 277 278 279		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads	270 271 271 273 274 275 275 276 277 277 277 277 278 279 280		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear	270 271 271 273 274 275 275 276 277 277 277 277 277 278 279 280 282		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear	270 271 271 273 274 275 275 276 277 277 277 277 277 278 279 280 282 283		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear	270 271 271 273 274 275 275 275 276 277 277 277 277 277 278 278 279 280 282 283		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design Ph	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear	270 271 271 273 274 275 275 275 276 277 277 277 277 277 278 279 280 280 282 283 283		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design Ph Slab Thic	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear	270 271 273 274 275 275 275 276 277 277 277 277 277 278 279 280 282 283 283 283 283		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design Phi Slab Thic Joints	e to Lateral Loads s riteria or Bedding ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear trinciples kness	270 271 271 273 274 275 275 275 276 277 277 277 277 277 278 279 280 280 282 283 283 283 283 284		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design Phi Slab Thic Joints 7.6.3.1	e to Lateral Loads s riteria or Bedding ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads shear trinciples kness General	270 271 271 273 274 275 275 275 276 277 277 277 277 278 279 280 282 283 283 283 283 283 284 284		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistanc Resistanc Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design Ph Slab Thic Joints 7.6.3.1 7.6.3.2	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear trinciples kness General Sawn Joints	270 271 271 273 274 275 275 275 276 277 277 277 277 278 279 280 282 283 283 283 283 283 283 284 284		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistance Resistance Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design P Slab Thice Joints 7.6.3.1 7.6.3.2 7.6.3.3	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear trinciples kness General Sawn Joints Cast-In Crack Initiators	270 271 271 273 274 275 275 275 276 277 277 277 277 278 279 280 282 283 283 283 283 283 283 283 284 284 284		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistance Resistance Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design P Slab Thice Joints 7.6.3.1 7.6.3.2 7.6.3.3 7.6.3.4	e to Lateral Loads s riteria or Bedding 'ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear trinciples kness General Sawn Joints	270 271 271 273 274 275 275 275 276 277 277 277 277 278 279 280 282 283 283 283 283 283 283 283 283 284 284 284 284		
7.4	Bored Pi 7.4.1 7.4.2 7.4.3 Holding 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 Slab Des 7.6.1 7.6.2	General Resistance Resistance Down Bolt General Design C Grouting Bolts in T 7.5.4.1 7.5.4.2 7.5.4.3 7.5.4.4 Bolts in S Corrosion ign Design P Slab Thice Joints 7.6.3.1 7.6.3.2 7.6.3.3	e to Lateral Loads s riteria or Bedding `ension Anchorage of Straight or Cogged Bars Cone Failure Embedment Lengths Minimum Edge Distance for Tensile Loads Shear finciples kness General Sawn Joints Cast-In Crack Initiators Keyed Joints	270 271 271 273 274 275 275 275 276 277 277 277 277 278 279 280 282 283 283 283 283 283 283 283 284 284 284		

7

 \mathbf{v}

	7.7	Design E	Example – Footings	288		
		7.7.1	Typical Portal Footings	288		
			7.7.1.1 Bored Piers	288		
			7.7.1.2 Compare Pad Footings	290		
		7.7.2	End Wall Column Footings	291		
		7.7.3	Main Portal Footings in Bracing Bays	292		
			7.7.3.1 Corner Columns	292		
			7.7.3.2 Column on Grid B2	292		
			7.7.3.3 Columns on Grids A2, A8 and B8	293		
		7.7.4	Holding Down Bolts for Portal Columns	293		
		7.7.5	Holding Down Bolts for End Wall Columns	294		
	7.8		Example - Slab	294		
		7.8.1	Design Criteria	294		
		7.8.2	Slab Thickness Design	294		
		7.8.3	Joints	295		
		7.8.4	Reinforcement	296		
	7.9	Reference		296		
0	0	D		207		
8			VAY BEAMS	. 297		
	8.1	General		297		
	8.2		Procedure for Crane Runways and Supporting Structure	299		
	8.3		f Crane Runway Beams	300		
		8.3.1	General	300		
		8.3.2	Design Loads and Moments	300		
		8.3.3	Member Capacity in Major Axis Bending ϕM_{bx}	301		
			8.3.3.1 AS 4100 Beam Design Rules	301		
			8.3.3.2 Proposed Monosymmetric Beam Design Rules	302		
		8.3.4	Crane Runway Beam Deflections	305		
	8.4	Design of Supporting Structure 3				
		8.4.1	Portal Frame Structure	305		
		8.4.2	Portal Frame Loads	306		
			8.4.2.1 General	306		
			8.4.2.2 Serviceability Wind Speeds	306		
		8.4.3	Portal Frame Deflection Limits	307		
	8.5	Design E	Example – Crane Runway Beams and Supporting Structure	308		
		8.5.1	General	308		
		8.5.2	Load Cases	309		
		8.5.3	Crane Runway Beams	311		
			8.5.3.1 Major Axis Bending Moments	311		
			8.5.3.2 Minor Axis Bending Moments	312		
			8.5.3.3 Combined Actions	315		
			8.5.3.4 Check Major Axis Compound Section Moment Capacity ϕM_{sv}	315		
			8.5.3.5 Deflections	315		
			8.5.3.6 Vertical Shear Capacity	316		
			8.5.3.7 Shear Buckling Capacity	316		
			8.5.3.8 Shear and Bending Interaction	317		
			8.5.3.9 Bearing Capacity of Crane Runway Beam	317		
			8.5.3.10 Check Local Transverse Bending of Compression Flange	319		
			8.5.3.11 Check Effect of Vertical Loads on Web	321		
			8.5.3.12 Check Effect of Eccentric Rail Loading on Crane Runway Beam Web	321		
			8.5.3.13 Check Effect of Web Buckling Under Vertical Loads	324		
			8.5.3.14 Fatigue	325		
			8.5.3.15 Check Effect of Eccentric Corbel Loading on Column	325		
		8.5.4	Check Portal Frame	327		
		0.2.т	8.5.4.1 General	327		
			8.5.4.2 Loads	327		
			8.5.4.3 Load Combinations	329		
			8.5.4.4 Columns	329		
			U.J.T.T COlumns	549		

	8.6 App	Referent endix 8.1	ces Design Capacity Tables	334 335
		endix 8.2	Background to Design Capacity Tables	342
9	Mo			
9	9.1	Introduc	tion	
	9.2		al Design	350
	9.2	9.2.1	General	350
		9.2.1	Loads	350
		9.4.4	9.2.2.1 General	350
			9.2.2.2 Vertical Loads	351
			9.2.2.3 Lateral Loads	352
			9.2.2.4 Dynamic Factors	352
		9.2.3	Member Capacity in Major Axis Bending $\phi M_{\rm bx}$	353
		2.2	9.2.3.1 General	353
			9.2.3.2 Segments Restrained at Both Ends	353
			9.2.3.3 Cantilevers	354
		9.2.4	Elastic Buckling Moment M_{oa} - Effective Length Approach	354
			9.2.4.1 General	354
			9.2.4.2 Typical Values of k_t , k_r and k_l	355
		9.2.5	Elastic Buckling Moment M_{ob} – Design by Buckling Analysis	357
			9.2.5.1 Advantages of Using Design by Buckling analysis	357
			9.2.5.2 Single and Continuous Spans	357
			9.2.5.3 Cantilevers	358
		9.2.6	Member Capacity in Major Axis Bending ϕM_{bxc} for Curved Monorails	360
		9.2.7	Local Bottom Flange Bending	361
		9.2.8	Web Thickness	365
		9.2.9	Deflections	365
	9.3	•	Example I – 2 Tonne Single Span Monorail	366
		9.3.1	Description	366
		9.3.2	Design Loads	367
		9.3.3 9.3.4	Preliminary Sizing Chaole Flower Thiolmost	367 368
		9.3.4 9.3.5	Check Flange Thickness Check Member Bending Capacity	369
		9.3.5	9.3.5.1 Design by Buckling Analysis	369
			9.3.5.2 Effective Length Method	309
			9.3.5.3 Comparison of Methods	370
		9.3.6	Web Thickness	370
		9.3.7	Deflections	371
			9.3.7.1 Vertical	371
			9.3.7.2 Horizontal	371
		9.3.8	Summary	372
	9.4	Design l	Example II – 1 Tonne Cantilever Monorail	372
		9.4.1	Description	372
		9.4.2	Design Load	373
		9.4.3	Preliminary Sizing	374
		9.4.4	Check Flange Thickness	374
		9.4.5	Check Member Bending Capacity	375
			9.4.5.1 Cantilever	375
			9.4.5.2 Back Span	379
		9.4.6	Check Web Thickness	380
		9.4.7	Deflections	380
			9.4.7.1 Vertical 9.4.7.2 Horizontal	380
		9.4.8		381 381
	9.5		Summary Example III – 5 Tonne Single Span Monorail	381
	7.5	9.5.1	Description	381
		9.5.1 9.5.2	Design Loads	381
		9.5.3	Preliminary Sizing	383
		9.5.4	Check Flange Thickness	383
		· · • • •		200

9.5.5	Check Member Bending Capacity	385
9.5.6	Check Web Thickness	385
9.5.7	Deflections	386
	9.5.7.1 Vertical	386
	9.5.7.2 Horizontal	386
9.5.8	Summary	386
9.6 Refe	rences	386
Appendix 9	.1 Design Capacity Tables	389
Appendix 9	2 Background to Design Capacity Tables	398
Appendix 9	3 Effective Length Factors	401
Appendix 9	4 Hoist & Trolley Data	404
APPENDIX I I	DRAWINGS	409
APPENDIX II F	RAME ANALYSIS OUTPUT	419
APPENDIX III L	IMSTEEL OUTPUT	439
APPENDIX IV L	IMCON OUTPUT	444
APPENDIX V (OUTPUT FOR PORTAL FRAME WITH CRANE	461
SUBJECT INDEX		467