
$$f_n = f_y \left(1 - \frac{f_y}{4f_{od}} \right) \qquad \qquad f_{od} > \frac{f_y}{2}$$

$$(7.21)$$

$$f_n = f_y \left[0.055 \left(\sqrt{\frac{f_y}{f_{od}}} - 3.6 \right)^2 + 0.237 \right] \quad \frac{f_y}{13} \le f_{od} \le \frac{f_y}{2}$$
(7.22)

where f_{od} is the elastic distortional buckling stress. Eq. (7.21) is the same as Eq. (7.19) except f_n has been substituted for f_{id} . Eq. (7.22) is a parabolic fit to the Kwon and Hancock test results. A comparison of Eqs (7.21) and (7.22) with the test results is shown in Fig. 7.5. In plotting Fig. 7.5, the measured face yield stress has been used to nondimensionalise the test results. In general, Eqs (7.21) and (7.22) provide a reasonable mean fit to the test results.

Eqs (7.21) and (7.22) have been adopted in Clause 3.4.6 of AS/NZS 4600. The critical stress (f_n) is multiplied with the full section area (*A*) to compute the nominal member compression capacity for distortional buckling. The full area (*A*) rather than the effective area is used since significant interaction between local buckling and distortional buckling was not observed in the tests in Refs 5.13 and 5.16.

Fig. 7.5 Distortional buckling strength design curves for compression

7.5 Effect of Local Buckling

7.5.1 Monosymmetric Sections

As demonstrated in Fig. 7.2, local buckling of a monosymmetric section such as a channel will produce an effective section whose centroid (C_e) is at a different position from the centroid of the gross section. For columns axially loaded between pinned ends, the line of action of the force in the section will move as loading increases and will be eccentric from the line of the applied force. Hence the section will be subject to eccentric loading and so a bending moment will be applied in addition to the axial force. Clause 3.4 of AS/NZS 4600 requires the designer to allow for the moment resulting from the eccentricity of loading by stating that the axial load passes through the centroid of the effective section. Hence an initially concentrically loaded pin-ended monosymmetric column must be designed as a member subjected to combined compression and bending as described in Chapter 8 of this book.

For fixed-ended columns, it has been demonstrated (Ref. 7.5) that the line of action of the applied force moves with the internal line of action of the force which is at the effective centroid

and so bending is not induced. Since most columns have some degree of end fixity, design based on loading which is eccentric from the effective centroid may be very conservative.

To investigate the effect of the moving centroid in more detail, both pin-ended and fixed-ended tests were performed on plain channel columns by Young and Rasmussen (Refs 7.6, 7.7). For the more slender sections tested (P48 with 48 mm wide flanges), the test results for the fixed-ended tests and for the pin-ended tests are compared with AS/NZS 4600 in Fig. 7.6. The fixed-ended tests underwent local and flexural buckling at shorter lengths and flexural-torsional buckling at longer lengths as shown in Fig. 7.6(a). The nominal member compression capacity (N_c) given by Clause 3.4.1 of AS/NZS 4600 compares closely with the test results. There is no need to include load eccentricity in the design of fixed-ended monosymmetric sections. The pin-ended tests underwent local and flexural buckling at shorter lengths and flexural buckling at longer lengths as shown in Fig. 7.6(b). The test results are considerably lower than the nominal member compression capacity (N_c) given by Clause 3.4.1 of AS/NZS 4600 compares closely with the test results. There is no need to include load eccentricity in the design of fixed-ended monosymmetric sections. The pin-ended tests underwent local and flexural buckling at shorter lengths and flexural buckling at longer lengths as shown in Fig. 7.6(b). The test results are considerably lower than the nominal member compression capacity (N_c) given by Clause 3.4.1 of AS/NZS 4600. Hence the effect of loading eccentricity must be included for the pin-ended tests. However, the design curves based on combined compression and bending (as discussed in Chapter 8) are considerably lower than the test results and are thus very conservative.

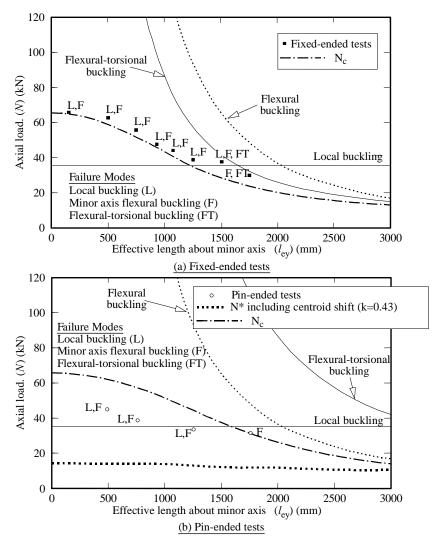


Fig. 7.6 Unlipped channel tests (Young and Rasmussen)

A similar investigation was performed by Young and Rasmussen (Ref. 7.8) for lipped channel columns. For the more slender sections tested (L48 with 48 mm wide flanges), the test results for the fixed-ended tests and pin-ended tests are compared with AS/NZS 4600 in Fig. 7.7. The fixed-ended tests underwent local and distortional buckling at shorter lengths and flexural/flexural-torsional buckling at longer lengths as shown in Fig. 7.7(a). The nominal member compression capacity (N_c) given by Clause 3.4.1 of AS/NZS 4600 is slightly lower than

the test results probably as a result of a conservative prediction of the stub column strength. As for the unlipped specimens, there is no need to include load eccentricity in the design of fixedended monosymmetric sections. The pin-ended tests underwent local and flexural buckling at shorter lengths and flexural buckling at longer lengths as shown in Fig. 7.7(b). The test results are comparable with the nominal member compression capacity (N_c) given by Clause 3.4.1 of AS/NZS 4600. The design curves based on combined compression and bending (as discussed in Chapter 8) are lower than the test results. The position of the moving centroid as predicted by Clause 2.4.3.2 needs further investigation. The need to take account of the moving centroid does not appear to be as significant for the pin-ended lipped channels in Fig. 7.7(b) as for the pin-ended unlipped channels in Fig. 7.6(b).

The inclusion of the effect of loading eccentricity from the moving centroid is also shown for the slender-angle sections in Fig. 7.4(a). It can be seen to produce conservative design values when compared with the test results.

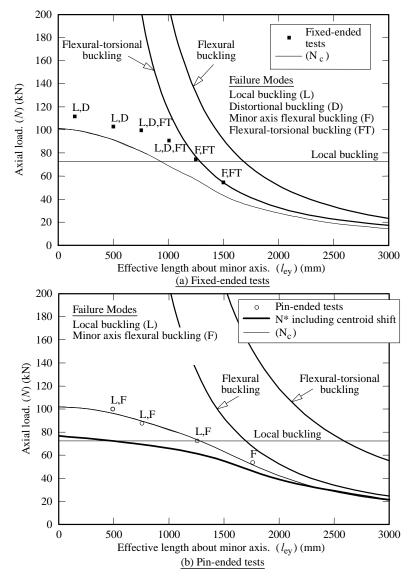


Fig. 7.7 Lipped channel tests (Young and Rasmussen)

7.5.2 High Strength Steel Box Sections

Pin-ended column tests were performed on closed sections brake pressed from aluminium/zinccoated Grade G550 structural steel sheet to AS1397 in 0.42 mm and 0.6 mm thickness (Refs. 7.9, 7.10). Epoxy was used to close the LB-sections which were constructed from hat sections glued toe to toe. The lengths of the LB sections ranged from 450 mm to 1100 mm for the 0.60 mm sheet steel and 550 mm to 1700 mm for the 0.42 mm sheet steel.

Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney

fourth edition - 2007

CONTENTS

	F	Page
PREFACE	TO THE 4 th EDITION	viii
CHAPTER	R 1 INTRODUCTION	1
1.1.1		1 1
1.1.2 1.1.3	Specifications	1 2
1.2 (Common Section Profiles and Applications of Cold-Formed Steel	4
1.3 I	Manufacturing Processes	10
1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7	Propensity for Twisting Distortional Buckling Cold Work of Forming Web Crippling under Bearing Connections Corrosion Protection Inelastic Reserve Capacity	12 12 13 14 15 15 16 16
1.5 l	Loading Combinations	17
1.6 l	Limit States Design	17
1.7 (Computer Analysis	19
1.8 F	References	20
CHAPTER	R 2 MATERIALS AND COLD WORK OF FORMING	22
2.1 \$	Steel Standards	22
2.2	Typical Stress-Strain Curves	23
2.3	Ductility	25
2.4 E	Effects of Cold Work on Structural Steels	29
2.5 (Corner Properties of Cold-Formed Sections	30
2.6.1 2.6.2 2.6.3	Fracture Toughness Background Measurement of Critical Stress Intensity Factors Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens	32 32 32 34 35
2.7 F	References	36
CHAPTER	8 3 BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING	37
3.1 I	Introduction to the Finite Strip Method	37
3.2 3.2.1 3.2.2 3.2.3	Lipped Channel	38 38 41 44
3.3 F 3.3.1 3.3.2		45 45 46

iii

	3.4 3.4.7 3.4.2		47 47 48
	3.5	References	49
CI	HAPTE	R 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS	50
	4.1	Local Buckling	50
	4.2	Postbuckling of Plate Elements in Compression	51
	4.3	Effective Width Formulae for Imperfect Elements in Pure Compression	52
	4.4 4.4.7 4.4.2		56 56 56
	4.5 4.5.2 4.5.2 4.5.3	2 Intermediate Stiffened Elements with One Intermediate Stiffener	57 57 58 58 58
	4.6 4.6.7 4.6.2 4.6.3	2 Hat Section in Bending with Intermediate Stiffener in Compression Flange	59 59 63 68
	4.7	References	75
CI	HAPTE	R 5 BEAMS, PURLINS AND BRACING	76
	5.1	General	76
	5.2 5.2.7 5.2.2 5.2.3	2 Continuous Beams and Braced Simply Supported Beams	77 77 81 85
	5.3 5.3.7 5.3.2	5 5	86 86 89
	5.4 5.4.1 5.4.2 5.4.3	2 Stability Considerations	89 89 92 94
	5.5 5.5.7 5.5.2 5.5.3	2 Lateral Restraint but No Torsional Restraint	95 95 95 96
	5.6	Bracing	98
	5.7 5.7.2 5.7.2	1 Sections with Flat Elements 1	01 01 02
	5.8 5.8.7 5.8.7 5.8.7 5.8.4	1Simply Supported C-Section Purlin12Distortional Buckling Stress for C-Section13Continuous Lapped Z-Section Purlin14Z-Section Purlin in Bending1	02 02 07 08 16
	5.5		~~

CHAPTE	R 6 WEBS	125
6.1	General	125
6.2	Webs in Shear	125
6.2. 6.2.	0	125 127
6.3	Webs in Bending	127
6.4	Webs in Combined Bending and Shear	129
6.5	Web Stiffeners	130
6.6	Web Crippling (Bearing) of Open Sections	130
6.6. 6.6.	1 Edge Loading Alone	130 133
6.7	Webs with Holes	134
6.8	Examples	136
6.8.	1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section	Purlin 136
6.8.	2 Combined Bearing and Bending of Hat Section	138
6.9	References	139
CHAPTE	R 7 COMPRESSION MEMBERS	141
7.1	General	141
7.2	Elastic Member Buckling	141
7.2. 7.2.	, 3	141 143
7.3	Section Capacity in Compression	143
7.4	Member Capacity in Compression	144
7.4. 7.4.:		144 146
7.5	Effect of Local Buckling	147
7.5.	1 Monosymmetric Sections	147
7.5.		149
7.6 7.6.	Examples 1 Square Hollow Section Column	151 151
7.6.2	2 Unlipped Channel Column	153
7.6.3	3 Lipped Channel Column	157
7.7	References	164
CHAPTE	R 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING	165
8.1	Combined Axial Compressive Load and Bending - General	165
8.2	Interaction Equations for Combined Axial Compressive Load and Bending	166
8.3 8.3. 8.3.		167 167 169
8.4	Combined Axial Tensile Load and Bending	170
8.5	Examples	171
8.5. 8.5		171 174
8.5. 8.5.		174 176
8.6	References	180

v V

CHAPTER 9 CONNECTIONS	182
9.1 Introduction to Welded Connections	182
 9.2 Fusion Welds 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading 9.2.3 Fillet Welds subject to Longitudinal Loading 9.2.4 Combined Longitudinal and Transverse Fillet Welds 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds 	184 184 185 186 186 187 190
9.3 Resistance Welds	190
9.4 Introduction to Bolted Connections	190
 9.5 Design Formulae and Failure Modes for Bolted Connections 9.5.1 Tearout Failure of Sheet (Type I) 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) 9.5.4 Shear Failure of Bolt (Type IV) 	192 193 193 194 196
9.6 Screw Fasteners and Blind Rivets	196
9.7 Rupture	200
9.8 Examples 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example	201 201 205
9.9 References	208
CHAPTER 10 DIRECT STRENGTH METHOD	209
10.1 Introduction	209
10.2 Elastic Buckling Solutions	209
 10.3 Strength Design Curves 10.3.1 Local Buckling 10.3.2 Flange-distortional buckling 10.3.3 Overall buckling 	210 210 212 213
10.4 Direct Strength Equations	213
10.5 Examples 10.5.1 Lipped Channel Column (Direct Strength Method) 10.5.2 Simply Supported C-Section Beam	215 215 216
10.6 References	218
CHAPTER 11 STEEL STORAGE RACKING	219
11.1 Introduction	219
11.2 Loads	220
 11.3 Methods of Structural Analysis 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order 11.3.3 Beams 	221 222 223 223
 11.4 Effects of Perforations (Slots) 11.4.1 Section Modulus of Net Section 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) 	224 224 225 225
11.5 Member Design Rules11.5.1 Flexural Design Curves11.5.2 Column Design Curves	225 225 226

vi

11.5.3 Distortional Buckling	227
11.6 Example	227
11.7 References	235
SUBJECT INDEX BY SECTION	236

