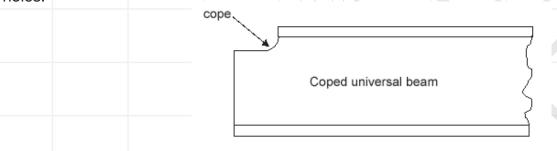
38 - LIQUID METAL ASSISTED CRACKING OF GALVANIZED STRUCTURAL STEEL SECTIONS

INTRODUCTION

In excess of 300,000 tonnes of fabricated steel is hot dip galvanized in Australia annually and approximately 20 million tonnes is galvanized world-wide each year. (Note: This tonnage does not include continuously galvanized sheet, wire and tube). A significant proportion of this tonnage is structural sections.

In a very small number of instances in Europe, Asia and the USA, a phenomenon called liquid metal assisted cracking (LMAC) has occurred in the webs of larger structural beams. This phenomenon is also called cope cracking, as it arises in the coped sections of the beam webs.

There have been no recorded instances of LMAC occurring in universal structural sections in Australia. However, the potential for the development of cracks on what is a critical zone of these structural sections is an issue that needs to de defined in the interests of designers intending to use hot dip galvanized coatings for long-term protection of the structural sections used in their construction projects.


INDUSTRY RESEARCH

The infrequency of LMAC events and the somewhat unpredictable nature of the phenomenon have prevented conclusive research to be undertaken by interested industry oranisations. However, a significant amount of research has been done or is underway. The Galvanisers Association (GA) and the British Construction Steelwork Association (BCSA) in the UK, as well as the International Lead Zinc Organization (ILZRO) and the American Galvanizers Association (AGA) and other international industry groups in Germany and Japan are involved in ongoing research and investigation into LMAC phenomena.

WHAT IS A COPE?

The illustration below shows a cope detail on a universal beam. Copes are oxy cut, usually in two operations. The first cut removed the top flange and a section of the web. The second operation cuts the cope radius and removes the remaining section of the web.

While LMAC in structural sections has generally been identified with copes, cracking may also arise where excessive stress has been induced in the steel through welding, oxy cutting or the punching of holes.

STEEL SUSCEPTABILITY

From research and case studies done to date, it has been recognised that there is a range of factors that can influence the initiation of LMAC, and there is a degree of synergy between some of the factors that may contribute to the phenomenon jointly, rather than individually.

Factors that have been identified as important as prerequisite for LMAC to occur are:

- the initial stress level of the steel
- steel chemistry
- steel section factors

The factors causing embrittlement of steel in the hot dip galvanizing process are well defined and understood. The most commonly encountered embrittlement problems associated with galvanizing are hydrogen embrittlement and strain-age embrittlement. The former arises with high strength steels (over 800 MPa) where they are acid pickled, allowing hydrogen to penetrate into the grain boundaries. This is independent of the galvanizing process itself, and will occur with any high strength steels that are pickled in acid in electroplating and other coating processes.

Crack propagated from the corner of this angle frame after galvanizing is suspected of arising from liquid metal assisted cracking.

Strain-ageing embrittlement arises where steel of lower strength are severely cold-worked by bending or punching. The severely cold-worked steel 'ages' to a brittle state over time. The heat of the galvanizing process, or any other processes that heat the strained area such as welding, will accelerate the onset of embrittlement.

Liquid metal embrittlement is a less common cause of embrittlement that does not affect structural steels, and it should not be confused with LMAC. Stainless steels are particularly susceptible to liquid metal embrittlement in molten zinc, and the use of stainless steel elements in mild steel assemblies that are to be hot dip galvanized is not recommended.

FACTORS IN LMAC

In an ILZRO funded project (MTL 97-18) undertaken by the CANMET Materials technology laboratory found that steels below 415 MPa have a very low susceptibility to LMC. Where steels are oxy cut in the cope areas, usually requiring two operations as described above, considerable thermal sress can be induced in the heat affected zone (HAZ).

These large galvanized beams, galvanized in Malaysia, have all been affected by 'cope cracking' in the circular (coped) area of the beam webs. Steel sourced from electric furnace sources is more prone to this form of liquid metal assisted cracking that steel sourced from blast furnaces. This phenomenon has never been reported in Australia as all the locally produced structural sections are manufactured from blast furnace sources.

A significant level of micro-cracking can occur on the HAZ of higher strength steels and these micro-cracks are the precursors of more significant cracking when further thermal stresses are induced in the hot dip galvanizing process, where the steel is raised from ambient temperate to 455oC in a very short time.

The form of the section is a factor here. The flange/web connection is a relatively heavy cross section and in many cases, the web/flange thickness ratio is less that 1:1. This results in differential heating at each end of the cope that may further increase the stress in this critical area while the section is immersed in the molten zinc.

Steel chemistry factors have also been identified as a contributor to LMAC susceptibility. Residual elements such as copper and tin and to a lesser extent, nickel and chrome, are known contributors to hot shortness in steel as they can come out of solution in the iron and migrate to the grain boundaries when the steel is heated to elevated temperatures of over 1000oC. The presence of these residual elements in steel are known to contribute to micro-cracking when the steel is heated to temperatures typically encountered when oxy-cutting.

38 - LIQUID METAL ASSISTED CRACKING OF GALVANIZED STRUCTURAL STEEL SECTIONS

manufactures from scrap via the electric furnace process. Steel produced via the blast furnace route, using largely natural raw materials, have lower levels of these residual elements.

All steel structural sections (universal columns and beams) manufactured in Australia are produced via the blast furnace steelmaking process and there have been no reported incidents of LMAC with any of this material. Australia is unique in this respect as many other steel producing countries do not have the manufacturing processes for their steel sections so clearly delineated.

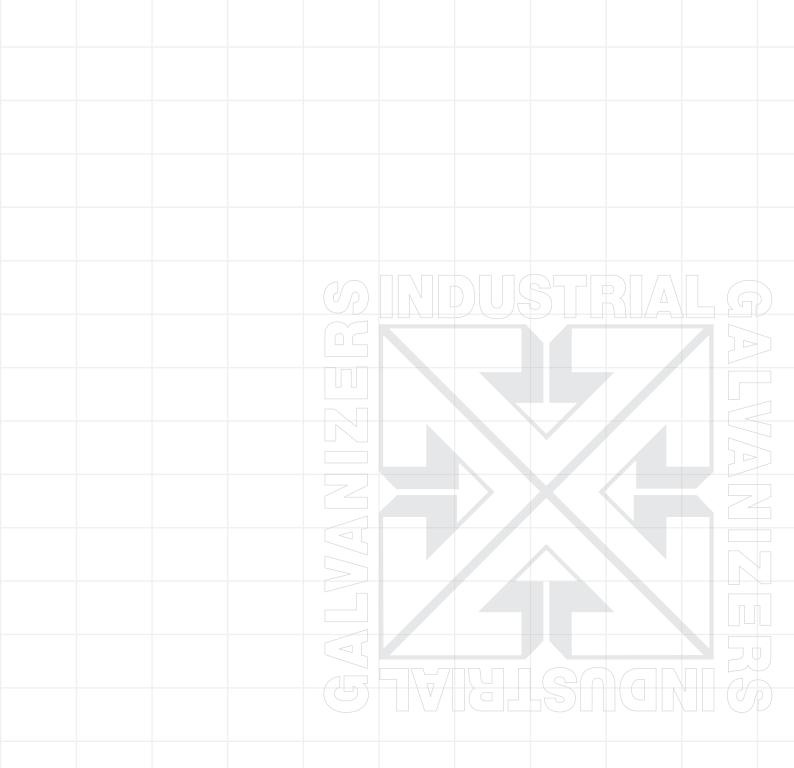
One known incident has been reported to Industrial Galvanizers of what appears to be an LMAC event on a light (100x100x10 mm) angle frame that had cracks propagating from the HAZ adjacent to the welds. All of these smaller merchant sections are produced from scrap-fed electric furnaces.

AVOIDING LMAC IN STRUCTURAL FABRICATIONS

The British Construction Steelwork Association has published a technical note, authored by its Technical Manager, David Moore, containing recommendations to minimise the risk of LMAC in galvanized structural sections.

These include;

- attention to design and detailing
- type and quality of steel specified
- fabrication techniques
- the galvanizing process and post-treatment and inspection.


Stress level	Material susceptibility	Liquid metal
Internal material stress	Steel chemical composition	Impurities / A
old deformation/prior strain	Yield strength	Temperature
Welding residual stresses	Carbon equivalent	Intentional additives
Restraint in the fabrication process	Residual stresses from manufacturing processes	
Thermal stress – immersion e – variable section thickness – differential temperatures	Hardness	
Practical Factors		
Web/flange thickness ratio		
Welds – fillet/butt		
Depth of member (stiffness)		
Holes drilled/punched		
ember profile – section type/ element		
Beam design		
Pre-heating procedures		
sence of notches, inclusions and other steel defects		

If LMAC is identified in a structural section after galvanizing, procedures are available to remediate the affected area by gouging out the cracked area, re-welding and repairing the coating in the weld zone.

A hierarchy of factors has been listed in the BCSA's document which has been reproduced below.

SUMMARY

The rarity of LMAC occurring with Australian steels is an indication that the hot dip galvanizing of structural sections can be confidently undertaken. However, 35% of steel used by Australian fabricators and manufacturers is now imported, and the factors likely to initiate LMAC should be kept in mind when designing structures that are likely to be fabricated from steel structural section from sources other than Australian steelmakers.

01	SPECIFIERS MANUAL	
02	INDUSTRIAL GALVANIZERS COMPANY PROFILE	
03	ADHESION OF PROTECTIVE COATINGS	
04	BOLTING GALVANIZED STEEL	
05	BURIED GALVANIZED STEEL	
06	CONCRETE DURABILITY & GALVANIZED REBAR	
07	CORROSION MAPPING	
08	COST FACTORS FOR HOT DIP GALVANIZED COATINGS	
09	CUSTOM COATING PACKAGES	
10	CUT EDGE PROTECTION	
11	DESIGNING FOR GALVANIZING	
12	ILLUSTRATED GUIDE TO DESIGN FOR GALVANIZING	
13	DEW POINT TABLES	
14	DIFFICULT STEELS FOR GALVANIZING	
15	DOCUMENTATION - CORRECT PAPERWORK ENSUES EFFICIENT PROCESSING	
16	ENVIRONMENTAL ISSUES FOR INDUSTRIAL COATINGS	
17	ZINC, HUMAN HEALTH AND THE ENVIRONMENT	
18	DEFECTS IN GALVANIZED COATINGS	
19	GALVANIC SERIES	
20	GLOSSARY OF GALVANIZING TERMS	
21	GUARANTEES FOR HOT DIP GALVANIZED COATINGS	
22	LIFE CYCLE COSTS OF INDUSTRIAL PROTECTIVE COATING SYSTEMS	
23	PAINTING OVER GALVANIZED COATINGS	
24	POWDER COATING OVER GALVANIZED COATINGS	
25	QUALITY AND SERVICE FACTORS AFFECTING GALVANIZED COATINGS	
26	RESTORATION OF PREVIOUSLY GALVANIZED ITEMS	
27	REPAIR OF GALVANIZED COATINGS	
28	STEEL STRENGTH AND HOT DIP GALVANIZING	
29	STANDARDS - AS/NZS 4680:2006	
30	STANDARDS - AUSTRALIAN AND INTERNATIONAL STANDARDS	
31	STEEL SURFACE PREPERATION	
32	SURFACE PREPERATION FOR PAINTING HOT DIP GALVANIZED COATINGS	
33	THICKNESS MEASUREMENT OF PROTECTIVE COATINGS	
34	WELDING GALVANIZED STEEL	
35	AN INTRODUCTION TO THE HOT DIP GALVANIZING PROCESS	
36	ZINC COATING PROCESSES - OTHER METHODS	
37	GALVANIZED COATINGS AND BUSHFIRE	
38	LIQUID METAL ASSISTED CRACKING OF	
	GALVANIZED STRUCTURAL STEEL SECTIONS	
39	GALVANIZING 500N GRADE REINFORCING BAR	
40	PREDICTING THE LIFE OF GALVANIZED COATINGS	
41	CHEMICALS IN CONTACT WITH GALVANIZED COATINGS.	
42	ATMOSPHERIC CORROSIVITY ASSESSMENT	
43	GLOBAL WARMING - CLIMATE CHANGE AND GALVANIZING	
44	STEEL - ITS CORROSION CHARACTERISTICS	
45		
46	WHITE RUST PREVENTION AND TREATMENT	

01 - SPECIFIERS MANUAL - THIRD EDITION

Industrial Galvanizers Australian Galvanizing Division (IGAG) operates nine galvanizing plants around Australia, ranging in size from large structural galvanizing facilities to specialised small plants designed to process small parts.

The Australian Galvanizing Division has galvanized in excess of 2 million tonnes of steel products in Australia since its first plant was commissioned in 1965 and is recognized for its ability to handle complex and difficult projects, as well as routine contracts.

This experience has been collated in the Specifiers Design Manual, to assist those involved in the design of steel products and projects to better understanding the galvanizing process and allow the most durable and cost-effective solutions to be delivered to these products and projects. All sections of this Third Edition have been completely updated and additional sections have been included to provide additional technical information related to the use of hot dip galvanized steel.

In addition to its Australian Galvanizing operations, Industrial Galvanizers Corporation has a network of manufacturing operations in Australia, as well as galvanizing and manufacturing businesses throughout Asia and in the USA.

The company's staff in all these locations will be pleased to assist with advice on design and performance of hot dip galvanized coatings and products. Contact details for each of these locations are located elsewhere in this manual.

This edition of the Industrial Galvanizers Specifiers Manual has been produced in both html and .pdf formats for ease of access and distribution and all documents in the Manual are in .pdf format and can be printed if paper documents are required.

The Specifiers Manual is also	accessible in its entirety	on the company's web site at	
www.ingal.com.au.	$(\mathcal{J}_{\mathcal{D}})$		

Additional copies of the Specifiers Manual are available on CD on request.

PUBLISHER:

Industrial Galvanizers Australian Galvanizing Division, PO Box 503, MOOROOKA QLD 4105 Ph: 07 38597418

EDITOR:

John Robinson, Mount Townsend Solutions Pty Ltd PO Box 355, JESMOND NSW 2299 Ph: 0411 886 884 Email: mt.solutions@optusnet.com.au

LAYOUT AND DESIGN:

Adrian Edmunds, Nodding Dog Design Ph: 0402 260 734 Email: adrian@noddingdogdesign.com Web: www.noddingdogdesign.com