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ABSTRACT 

Methods of designing steel monosymmetric I-beams against lateral buckling are not well supported by 
research.  For this paper, the inelastic buckling of monosymmetric steel I-beams under moment gradient was 
studied and compared with design recommendations.   
 
For welded beams in uniform bending, inelastic buckling is initiated at moments which are often close to those 
which cause first yield in the compression flange.  Once initiated, the inelastic buckling resistance remains 
constant as the  slenderness decreases until strain-hardening occurs.  For hot-rolled beams in uniform 
bending, the inelastic buckling resistance increases almost linearly as the slenderness decreases. 
 
Three regimes are significant in the inelastic buckling resistances of hot-rolled monosymmetric beams under 
moment gradient, depending on which flange yields first and the end moment ratio.   
 
Simple linear approximations of good accuracy were developed for designing hot-rolled monosymmetric 
beams in uniform bending, while less accurate but conservative approximations were developed for moment 
gradient.  The use of these approximations was illustrated by a worked example.  
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INTRODUCTION 

Methods of designing steel monosymmetric I-beams against lateral buckling are not well supported by 
research.  These methods (AISC 2010a, BSI 2005, SA 1998) are generally based on extrapolations from well 
researched studies of the effects of non-uniform bending on the elastic and inelastic buckling of doubly 
symmetric I-beams.  However, it has been pointed out (Kitipornchai et al 1986) that design methods of 
allowing for the effects of non-uniform bending on the elastic buckling of monosymmetric beams are 
questionable, while there appears to have been no attempt to justify the extension of inelastic buckling 
research to monosymmetric beams. 
 
The elastic lateral buckling of doubly symmetric I-beams has been studied extensively since the early work of 
Timoshenko in 1905 on simply supported beams (Timoshenko 1953).  The effects of moment distribution, 
load height, and concentrated and distributed restraints have been analysed, and there are many summaries 
of approximate formulae for the maximum moment at elastic buckling (Trahair 1993).  Exact solutions for the 
elastic buckling of simply supported beams under uniform bending are given in many design codes (AISC 
2010a, BSI 2005, SA 1998), as are approximations for the effects of non-uniform bending. 
 
The effects of moment distribution and load height on the elastic lateral buckling of monosymmetric I-beams 
has also been studied, and there is a number of summaries of approximate formulae for the maximum 
moment at elastic buckling (Anderson and Trahair 1972, Kitipornchai and Trahair 1980, Kitipornchai et al 
1986, Wang and Kitipornchai 1986, Helwig et al 1997).  Accurate solutions may be obtained by using finite 
element programs (Trahair 1993) such as the user-friendly program PRFELB (Papangelis et al 1993).  Exact 
solutions for the elastic buckling of simply supported beams under uniform bending are used in AS4100 (SA 
1998) and approximations in the AISC Commentary (AISC 2010b), as are approximations for the effects of 
non-uniform bending.   
 
The inelastic lateral buckling of doubly symmetric steel I-beams has also been studied, and early research 
has been summarised in Trahair (1983).  Inelastic buckling is influenced by the residual stresses induced 
during manufacture, which cause early yielding at the compression flange tips, with consequent reductions in 
the buckling resistance.  The yielding patterns are monosymmetric, and so also are the reduced flexural and 
torsional stiffnesses of the flanges and web (Trahair and Kitipornchai 1972).  The effects of residual stresses 
on the inelastic buckling of hot-rolled beams are accounted for in the AISC Specification (AISC 2010a), 
although there appears to be no allowance for the different residual stress patterns in welded beams 
(Fukumoto and Itoh 1981).  There are few studies of the inelastic lateral buckling of monosymmetric I-beams 
(Nethercot 1973). 
 
This paper investigates the inelastic lateral buckling of monosymmetric I-beams under uniform and non-
uniform bending. The geometry of the beams studied is shown in Fig. 1. The material properties given in Fig. 
2 include reduced moduli Es, Gs for the inelastic regions which are based on previous studies of inelastic 
buckling summarised in Trahair (1983, 1993).  The residual stresses fr assumed for welded and hot-rolled 
beams are shown in Fig. 3.  The flange residual stresses in the larger flange are simplified versions of those 
used in other inelastic buckling studies (Trahair 1983, 1993).  Reduced residual stresses are assumed for the 
smaller flange.  No residual stresses are assumed for the web, because web yielding has comparatively little 
effect on lateral buckling. 
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UNIFORM BENDING 
 

METHOD OF SOLUTION 

 
The distribution of the total strain across a welded beam section is shown in Fig. 4a as the sum of the residual 
strains r and the bending strains defined by the web strains wl, ws at the larger and smaller flanges.  The 
distribution of the total stress f is shown in Fig. 4b.  A method of calculating the inelastic uniform bending 
buckling moment Miu which corresponds to an assumed value of the web large flange bending strain wl, is as 
follows: 
 
(a) Determine the value of the web small flange bending strain ws and the corresponding distribution of 
the total stress f which satisfy the axial force equilibrium equation 

0 
A

fdAN         (1) 

in which A is the area. 
 
(b) Determine the inelastic buckling moment Miu using 


A

liu dAfyM         (2) 

in which yl is the distance from the larger flange centroid to the stress point. 
 
(c) Determine the inelastic minor axis flange flexural rigidities EIli, EIsi and the inelastic section flexural 
and torsional rigidities EIi, GJi by summing the contributions from the elastic and yielded regions using the 
elastic moduli E, G for the elastic regions of the section and the strain-hardening values Es, Gs for the yielded 
regions.  
 
(d) Determine the inelastic shear centre distance from the larger flange centroid y0i and the inelastic 
warping rigidity ECwi using 

sili

siw
i EIEI

EIb
y
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2
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in which bw is the distance between flange centroids. 
 
(e) Determine the inelastic monosymmetry section constant xi using 

dAyyxff
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A
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xi })(){(
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2       (5) 

The inclusion of the residual stress fr in this equation compensates approximately for the residual stress 
distribution having a non-zero torsional stress resultant during twisting (Wagner 1936). 
 
(f) Determine the beam length Liu by solving 
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(g) Determine the elastic uniform bending buckling moment Meu corresponding to this length Liu by 
substituting Liu for L in 
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in which Iy, J, Cw are the minor axis second moment of area, torsion constant, and warping constant of the 
section respectively, and x is the monosymmetry section constant given by 

  0
22 2)(

1
ydAyxy

I A
x

x          (8) 

in which Ix is the major axis second moment of area and y0 is the shear centre (S) distance from the centroid 
(C). 
 
 

RESULTS FOR WELDED BEAMS 

 
The variations of the dimensionless inelastic buckling moments Miu/Mp (in which Mp is the full plastic moment 
of the section) with the uniform bending modified slenderness  

)/( eupu MM         (9) 

are shown in Fig. 5 for monosymmetric I-beams with the welded residual stresses shown in Fig. 3a.  The 
values of bs / bl for the different curves shown in Fig.5 are positive when the moment causes compression in 
the larger flange, and negative when the moment causes compression in the smaller flange (this convention is 
also used in the later Figs 6, 7, 9, and 10). 
 
Also shown in Fig. 5 are the dimensionless elastic buckling moments Meu/Mp, and the dimensionless strain-
hardening buckling moments Msu/Mp in which Msu is obtained by using E = Es and G = Gs in Equation 7.  At high 
slendernesses, the values of Miu/Mp are close to the elastic values, while at low slendernesses they are close 
to the strain-hardening values.   
 
Between these slendernesses, the values of Miu/Mp are constant. Similar results were reported by Nethercot 
(1974). When the larger flange is in compression (bs/bl positive), the constant values increase as the beams 
become more monosymmetric, while the reverse is true when the smaller flange is in compression (bs/bl 
negative). These constant values often correspond to first yield of the outer regions of the compression flange 
which causes significant reductions in the values of EIyi and ECwi, as well as changes in the shear centre 
position y0i and consequent changes in the monosymmetry section constant xi. These first yield values are 
given by  

xcrcyfy SffM )(          (10) 

in which frc is the residual stress at the compression flange tip and Sxc is the elastic section modulus for the 
compression flange.   
 
Also shown in Fig. 5 are the nominal design moments of AISC (2005a) (for equal flanged I-beams), EC3 (BSI 
2005) and AS 4100 (SA 1998).  None of these reflect the calculated inelastic buckling moments, except that 
the AS 4100 and EC3 low slenderness limits (at which Miu = Mp) are close to the strain-hardening limit, while 
the AISC intermediate slenderness limit (at which Miu = Meu) corresponds to the value calculated for the equal 
flanged beam. 
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RESULTS FOR BEAMS WITH HOT-ROLLED RESIDUAL STRESSES 

 
The variations of the dimensionless inelastic buckling moments Miu/Mp with the modified slenderness u are 
shown in Fig. 6 for monosymmetric I-beams with the hot-rolled residual stresses shown in Fig. 3b.  Also 
shown in Fig. 6 are the dimensionless elastic buckling moments Meu/Mp, and the dimensionless strain-
hardening buckling moments Msu/Mp.  At intermediate slendernesses, the values of Miu/Mp are close to the 
elastic values, while at low slendernesses they are close to the strain-hardening values.   
 
Between these slendernesses, the variations of Miu/Mp are approximately linear. At low slendernesses, the 
inelastic moments approach the strain-hardening values, and are often close to values which correspond to 
full plasticity of the compression flange.  At intermediate slendernesses they approach the elastic values, and 
are often close to values which correspond to first yield at the compression flange tip. When the larger flange 
is in compression (bs/bl positive), the values increase as the beams become more monosymmetric, while the 
reverse is true when the smaller flange is in compression (bs/bl negative). 
 
It should be noted that in beams whose compression flange is the larger, early yielding at the tips of the 
smaller tension flange is delayed by the residual compression stresses there, so that yielding first occurs at 
the flange web junction where it has little effect on the buckling resistance. 
 
Also shown in Fig.6 is a range of design strengths calculated for compact beams that are capable of reaching 
the full plastic moment by using the AISC Specification (AISC 2010a,b).  These strengths vary little by 
comparison with the significant variations of the inelastic buckling resistances. 
 
 

MOMENT GRADIENT 

 

METHOD OF SOLUTION 

 
The inelastic lateral buckling resistances of beams under moment gradient are significantly affected by local 
reductions in the out-of-plane stiffnesses in the high moment regions of the beams where yielding takes place.  
Because the moment distribution varies, so do the stiffnesses, and the beams become non-uniform.  For this 
paper, a method of accounting for the local stiffness reductions caused by non-uniform yielding has been 
used which is  based on a method of member strength design by inelastic buckling analysis (Trahair and 
Hancock 2004), which itself is a development of the method of design by elastic buckling analysis permitted or 
implied in such codes as the AS 4100 (SA 1998) and EC3 (BSI 2005). 
 
In the code method of design by elastic buckling analysis, the results of an elastic buckling analysis are 
reduced by code slenderness reduction factors (SA 1998, BSI 2005) based on the design strengths of beams 
in uniform bending.  These reduction factors make allowance for the effects of residual stresses and 
geometrical imperfections. However, this method does not allow for the local effects of non-uniform yielding 
on the inelastic buckling resistance.  
 
In the method of member strength design by inelastic buckling analysis, an elastic buckling analysis is carried 
in which the local effects of non-uniform yielding on the out-of-plane stiffnesses are allowed for by using 
reduced stiffnesses derived from the code design strengths of beams in uniform bending.  This method has 
been tested against code formulations (SA 1998) for the lateral buckling strengths of beams under double 
curvature bending, beams with central concentrated loads acting away from the shear centre, and beams with 
elastic end restraints (Trahair and Hancock 2004).  It has also been used for columns, beam-columns (Trahair 
and Hancock 2004),  frames (Trahair 2009), and cantilevers (Trahair 2010). 
 
For this paper, this method of design by inelastic buckling analysis used out-of-plane section stiffness 
reductions determined from the inelastic lateral buckling strengths Miu shown in Fig. 6 for monosymmetric 
beams with the hot-rolled residual stresses shown in Fig. 3b.  These strengths were used to calculate the 
reduced section stiffness factors  = Miu/Meu whose variations with the dimensionless moments Miu/Mp are 
shown in Fig. 7.  These factors were used to reduce both the elastic moduli E, G.  These factors represent the 
results of integrations over the section of the contributions to the section properties from the elastic and 
yielded regions described previously in the method of solution for uniform bending. 
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The beam length Li corresponding to an assumed inelastic buckling moment Mi was determined iteratively by 
using the reduced moduli in the elastic buckling program PRFELB (Papangelis et al 1993).  Up to 25 nodes 
were used, with close spacing in the regions where the reduced moduli varied significantly.  Up to 13 different 
elements with averages  of the nodal values of the reduced moduli were used. 
 
The program PRFELB was also used with the length Li to determine the corresponding elastic buckling 
moment Me (which includes the effects of both monosymmetry and moment gradient) and the  corresponding 
modified slenderness  

)/( ep MM         (11) 

 
When this method is applied to monosymmetric beams in uniform bending, it produces predictions of the 
inelastic buckling moments Mi which are identical to the values of Miu shown in Fig. 6. 
 
 

RESULTS 

  
The variations of the dimensionless inelastic buckling moments Mi/Mp with the modified slendernesses  for 
monosymmetric beams with unequal end moments M, M are shown in Figs 8-10 for flange width ratios bs/bl = 
1.0, 0.6, and 0.2. 
 
For the beams with bs/bl = 1.0 (double symmetry) shown in Fig. 8, the effects of unequal end moments cause 
the inelastic buckling moment Mi to increase significantly towards the elastic buckling moment Me as the end 
moment ratio  increases from 1 (uniform bending) towards +1 (double curvature bending).  These increases 
are similar to but significantly less than those of the AISC Specification (AISC 2010a), also shown in Fig. 8.   
 
There are 3 different regimes for the dimensionless inelastic buckling moments Mi / Mp of the highly 
monosymmetric beams with bs/bl = 0.2 shown in Fig. 10.  The lowest regime is for beams for which the 
maximum end moment causes compression in the smaller flange (bs/bl negative).  For this regime, there is a 
steady increase in the value of  Mi/Mp as the end moment ratio  increases from 1 (uniform bending) to +1 
(double curvature bending). 
 
Similar increases occur for the highest regime, for which the maximum moment causes compression in the 
larger flange (bs/bl positive) and the end moment ratio  varies between 1 and +0.57.  For this regime, first 
yield in compression is caused by the larger end moment and occurs in the larger flange.   
 
The third regime is for beams whose maximum moment causes compression in the larger flange (bs/bl 
positive) and the end moment ratio  varies between +0.57 and +1.  For this regime first yield is caused by the 
smaller end moment, and occurs in the smaller flange.  For this regime, the dimensionless inelastic buckling 
moments Mi / Mp decrease as the end moment ratio  increases from +0.57 to +1. 
 
For the moderately monosymmetric beams with bs/bl = 0.6 shown in Fig. 9, the variations of the dimensionless 
inelastic buckling moments Mi/Mp with the end moment ratio  are similar to but less pronounced than those 
shown in Fig. 10 for the highly monosymmetric  beams with bs/bl = 0.2.  
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DESIGN METHODS 

UNIFORM BENDING 

Although it is possible to develop high accuracy approximations for predicting the inelastic buckling moments 
of monosymmetric I-beams in uniform bending, it is unlikely that these will be included in design codes whose 
lateral buckling strengths are based on inelastic buckling, such as the AISC Specification (AISC 2010a).  
Instead, simple linear approximations for the nominal uniform bending maximum moment capacity Mnu are 
presented in this section which are of reasonable accuracy while still being suitable for design.  These 
approximations (for compact beams) are as follows: 
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In these equations, u is the modified slenderness given by Equation 9,  

)/( ieupuy MM         (13) 

is the value of u for which Mieu = Meu , Meu is the elastic buckling moment given by Equation 7 (which includes 
the effects of monosymmetry), and the values of Mieu and Misu may be approximated by 
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in which Sxt is the elastic section modulus for the tension flange, Mfy is the moment at which the compression 
flange first yields at the flange tip given by Equation 10 (which includes an allowance for the residual stress), 
and  

 xcyfp SfM           (16) 

is the moment at which the compression flange fully yields. 
 
The accuracy of the approximations of Equations 14 and 15 is demonstrated in Fig. 11. 
 
 

MOMENT GRADIENT 

 
The complexity of the variations of the inelastic buckling moments with the end moment ratio  (demonstrated 
in Fig. 10) prevents the development of simple approximations of close accuracy which are suitable for 
design.  Instead, the linear approximations developed for uniform bending are extended to produce 
conservative approximations for the nominal maximum moment capacity Mn.  These approximations (for 
compact beams) are as follows: 
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In these equations,  is the modified slenderness given by Equation 11,  

)/( iepy MM         (18) 

is the value of  for which Mie = Me , and Me is the elastic buckling moment (which includes the effects of 
moment gradient and monosymmetry).  Values of Me may be obtained from available numerical solutions 
(Kitipornchai et al 1986) or computer programs such as PRFELB (Papangelis et al 1993).  The values of Mie 
and Mis may be approximated as follows: 
 
When the larger end moment M causes compression in the smaller flange, 
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in which frs is the (negative) residual stress at the tip of the smaller flange. 
 

When the larger end moment M causes compression in the larger flange, and fylfys MM /1   , in 

which 
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in which frl is the (negative) residual stress at the tip of the larger flange, then 
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in which Misul is the value of Misu for the larger flange obtained from Equation 15. 
 

When the larger end moment M causes compression in the larger flange, and 1/  fylfys MM , 
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WORKED EXAMPLE 

EXAMPLE 

 
Determine the nominal maximum design moment for a beam having the geometry, properties and residual 
stresses shown in figs 1-4 when bs/bl = ts/tl = 0.6, L = 4000 mm,  = 0.8, and the maximum moment causes 
compression in the larger flange.  For this beam, PRFELB predicts that the maximum moment at elastic 
buckling is Me = 1.627 E8 Nmm, while the full plastic moment is Mp = 1.271 E8 Nmm and the elastic section 
moduli are Sxl = 5.338 E5 mm3 and Sxs = 3.061 E5 mm3. 
 

SOLUTION 

Using (11), 2.08839.0)627.1/271.1(   

Using (20), NmmEE 87530.05061.3)6.03.01(300 fysM  

Using (21), NmmEE 8121.15338.5)3.01(300 fylM   

Thus,       thenEE8 ,8.06717.08121.1/7530.0/ fylfys MM  

Using (20),  NmmEE 89183.05061.3300 fpsM  

Using (23),  NmmE 89413.08.0/87530.0 EMie   

        NmmEE 8653.1)8.024.3(89183.0 isM  

Using (18)     8839.0162.1)89413.0/8271.1( EEy  

Using (17),  pn MM 

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CONCLUSIONS 

For this paper, the inelastic buckling of monosymmetric steel I-beams under moment gradient was studied 
and compared with design recommendations.  Variations in the bending moment along a beam cause 
variations in the effective moduli and in a beam’s resistance to inelastic lateral buckling.  These variations 
were accounted for by adapting a method of design by inelastic buckling analysis in which reduced moduli 
were used in elastic buckling analyses. 
 
Beams with residual stress distributions typical of welded and hot rolled beams were assumed.  For welded 
beams in uniform bending, inelastic buckling is initiated at moments which are often close to those which 
cause first yield in the compression flange.  Once initiated, the inelastic buckling resistance remains constant 
as the  slenderness decreases until strain-hardening occurs.  Design code recommendations do not reflect 
this behaviour. 
 
For hot-rolled beams in uniform bending, the inelastic buckling resistance increases almost linearly as the 
slenderness decreases, until strain-hardening occurs.  The resistance also increases significantly as the 
relative size of the compression and tension flanges increases, but this is not reflected in the AS (SA 1998) 
and EC3 (BSI 2005) design codes. The design rules of the AISC (2010a) display these trends, but with 
significant differences. 
 
Three regimes are significant in the inelastic buckling resistances of hot-rolled monosymmetric beams under 
moment gradient.  For beams for which the maximum moment causes compression in the smaller flange, the 
resistance is low and increases with moment gradient.  For beams for which the maximum moment causes 
yielding in the larger flange before the minimum end moment causes yielding in the smaller flange, the 
resistance is high and increases with moment gradient.  For beams for which the minimum end moment 
causes yielding in the smaller flange before the maximum moment causes yielding in the larger flange, the 
resistance is moderate,  and decreases with moment gradient. 
 
Simple linear approximations of good accuracy were developed for designing hot-rolled monosymmetric 
beams in uniform bending, while less accurate but conservative approximations were developed for moment 
gradient.  These approximations require the use of predictions of the maximum moment at elastic buckling.  
Closed form solutions for these are available for uniform bending, but available numerical solutions 
(Kitipornchai et al 1986) or computer programs such as the user-friendly PRFELB (Papangelis et al 1993) 
must be used for moment gradient.  The use of these approximations was illustrated by a worked example.  
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APPENDIX 2 – NOTATION 

 
SUBSCRIPTS 
 
c, t  Compression or tension 
e, i, s  Elastic, inelastic, or strain-hardening buckling 
p, y  Flange at full plasticity or first yield  
l, s  Larger or smaller flange 
r  Residual 
u  Uniform bending 
x, y  Principal axis values 
 
PRINCIPAL NOTATION 
 
A  Area of cross section 
b  Flange width 
bw  Distance between flange centroids 
Cw  Warping section constant 
E  Young’s modulus of elasticity 
f  Total stress 
fy  Yield stress 
G  Shear modulus of elasticity 
I  Second moment of area 
J  Uniform torsion constant 
L  Span length 
M  Maximum end moment 
Mfp  Moment which causes full yielding of flange 
Mfy  Moment which causes first yield of flange 
Mn  Nominal design moment capacity 
N  Axial force resultant of stresses 
S  Elastic section modulus  
t  Thickness 
tw  Web thickness 
x, y  Principal axis coordinates 
y0  Shear centre coordinate 
y0i  Shear centre distance from larger flange centroid 
yl  Distance from larger flange centroid 
 
  Ratio of inelastic and elastic moduli 
  End moment ratio 
x  Monosymmetry section constant 
  Strain 
wl, ws Web strains at larger and smaller flanges 
  Modified slenderness  
y  Modified slenderness for Mi = Me 
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Fig. 2  Material Properties of Monosymmetric Beams 
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Fig. 5  Inelastic Buckling of Welded Beams – Uniform Bending   
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Fig. 6  Inelastic Buckling of Hot Rolled Beams – Uniform Bending  
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Fig. 9  Inelastic Buckling Under Moment Gradient   
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Fig. 10  Inelastic Buckling Under Moment Gradient  
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Fig. 11  Compression Flange “Yield” and “Plastic” Moments  
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