B4. Indicative Construction Sequence and Stages

B4.1 The importance of construction stages in composite design

In many forms of construction it is sufficient to consider the strength, stability and serviceability of a structure only in its final completed form. The documentation of most engineering designs contains a clause to the effect "the builder shall be responsible for the safety and stability of the works during the course of construction". This clause means that the builder should provide any formwork and or temporary propping and falsework that is required to ensure that the structure does not fall down during construction while the engineer's responsibility starts once the building is completed. There have been recent changes to the laws in this regard and the split of responsibility is never as black and white as this – but the general principal remains for many types of construction.

With composite construction, the builder remains responsible for many issues during the course of construction – but the engineer cannot pass on all responsibility for safety and stability during construction. A major advantage of composite flooring systems is that at least potentially, no formwork and no propping is required. But the engineer must think through the proposed construction sequence and carry out necessary design checks at all critical stages through the construction sequence, to ensure that overloading or instability will not develop.

This section presents in graphical style a typical construction sequence for this sort of building. In the detailed design stage, calculations are presented that confirm the safety of the structure during the various stages.

It is critical to get a clear picture of the three principal stages during construction at which the designer must confirm design adequacy of the proposed floor framing arrangement and sizes. These critical stages are as follows:

- When the steel beams have been lifted into place and support the steel decking but are not yet fixed to that decking so that they are unrestrained against beam buckling over a long effective length.
- At the concrete pour stage. At this stage the Bondek has to support the wet concrete and construction loads without any assistance from composite action. This is the stage that determines the maximum unpropped slab span. The beams at this stage should be secured to the decking and thus are restrained against buckling but have to support a considerable load without the assistance of a cured concrete slab to act as a composite top compression flange.
- During occupancy when the building is completed. It is not until the floor is completed and cured that composite action develops to assist in supporting the full and final design loads.

With the proposed construction sequence, steel 'erection columns' are used. As illustrated on following pages these allow construction to proceed at a fast rate – but they are not designed to support the full final weight of the building. This is carried by the steel columns acting together with reinforced concrete columns poured around the erection columns. Thus the engineer needs to ensure that the erection columns are strong enough to support the maximum load that they will carry during construction – while the final RC columns will carry the final completed building loads. This also provides essential fire resistance. (Normally, the concrete columns will be poured prior to pouring the next floor above, so that the erection columns will support only the erected steelwork plus one concreted floor; only in rare instances will the concreting of the columns be delayed as illustrated on following pages.

The indicative construction sequence shows the steel frame being completed well ahead of the concreting of the floors. This system allows for maximum flexibility in scheduling the construction and was popular in the past to minimise floor to floor construction times. It potentially gives rise to high erection column loads prior to their concrete encasement. Because of increased safety requirements it is now more common (at least in Australia) to allow the steel frame to proceed only one or two levels ahead of concreting.

B4.1 Indicative construction sequence and construction stages

25

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Composite Design Example for Multistorey Steel Framed Buildings

Copyright © 2007 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2007 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Durack, J.A. (Connell Wagner) Kilmister, M. (Connell Wagner) Composite Design Example for Multistorey Steel Framed Buildings 1st ed.

Bibliography. ISBN 978-1-921476-02-0

- 1. Steel, Structural—Standards Australia.
- 2. Steel, Structural—Specifications Australia.
- 3. Composite, (Engineering)—Design and construction.
- I. Connell Wagner
- II. Australian Steel Institute.
- III. Title

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. The design examples contained in this publication have been developed for educational purposes and designed to demonstrate concepts. These materials may therefore rely on unstated assumptions or omit or simplify information. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. Any reference to a proprietary product is not intended to suggest it is more or less superior to any other product but is used for demonstration purposes only. The Australian Steel Institute, its officers and employees and the authors, contributors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility whatsoever for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, contributors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

Table of contents

Table of contents		
Preface		
Section A: INPUT INFORMATION		
A1. Client and Architectural Requirements		
A2. Site Characteristics		
A3. Statutory Requirements		
A4. Serviceability		
A5. Design Loads		
A6. Materials and Systems	10	
A7. Design Aids and Codes		
Section B: CONCEPTUAL AND PRELIMINARY DESIGN		
B1. Conceptual and Preliminary Design	13	
B1.1 Consideration of alternative floor framing systems– Scheme A	14	
B1.2 Consideration of alternative floor framing systems– Scheme B	15	
B1.3 Framing system for horizontal loading – initial distribution of load	16	
B1.4 Alternatives for overall distribution of horizontal load to ground	17	
B2. Preliminary Slab Design	21	
B3. From Alternatives to Adopted Systems	22	
B3.1 Adopted floor framing arrangement	22	
B3.2 Adopted framing arrangement for horizontal loading	23	
B4. Indicative Construction Sequence and Stages	24	
B4.1 The importance of construction stages in composite design	24	
B4.1 Indicative construction sequence and construction stages	25	
B4.2 Adopted construction sequence for design of erection columns	27	
B4.3 Core construction alternatives	27	
B4.4 Adopted construction method for the core	27	
B5. Preliminary Sizing of Primary and Secondary Beams	28	
B6. Plenum Requirements and Floor to Floor Height		
B7. Prelimary Column Sizes and Core Wall Thickness	33	
Section C: DETAILED DESIGN	35	
C1. Detailed Design - Introduction	36	
C2. Design Stages and Construction Loading	37	
C3. Detailed Load Estimation After Completion of Construction	38	
C3.1 Vertical loading	38	
C3.2 Wind loading.	39	
C3.3 Seismic loading Not considered	40	
C4. Erection Column Design		
C4.1 Load distribution for erection column design	42	
C4.2 Side Column C5 (typical of C5 to C10)	43	
C4.3 End column C2 (typical of C2, C3, C12 and C13)	44	
C4.4 Corner column C1 (typical of columns C1, C4, C11 and C14)	44	
C5. Floor Beams – Construction Stage 1	45	
C5.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – B41, B43 – 48)	45	
C5.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 to B12, B18,	46	
B19 – 21, B49 – 51 and B42)	46	
C5.3 Primary beams Group P2(9250, 6600) (B2, B6, B13 and B17)	47	
C6. Floor Beams – Construction Stage 3	48	
C6.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – 41, B43 – 48)	48	
C6.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 - B12, B18 – 21,	49	
B49 – 51 and B42)	49	
C6.3 Primary beams Group P2(9250, 6600) (Beams B2, B6, B13, B17)	49	
C7 Floor Beam Design for Occupancy Loading		
C7.1 Secondary beams Group S1(11 050, 2800) (Beams B19, B21, B22 - B41,	51	
B43 – B49 and B51)	51	

Ш

C7.2	Primary beams Group P1(9800.5725) (Beams B1, B7 to B12, B18)	
C7.3	Primary beams group P2(9050, 6600) (Beams B2, B6, B13, B17)	
C8. Assessment of Dynamic Performance of Floor System		
C8.1	Definition of the dynamic assessment process	69
C8.2	Application of the dynamic assessment process	73
C9 Final Slab Design		
C9.1	Slab design for the office areas	79
C9.2	Slab design for the compactus areas	80
C10. Longitudinal Shear Reinforcement Design		
C10.1	Introduction	81
C10.2	Proprietory longitudinal shear reinforcement products	83
C10.3	Secondary beams group S1, B22 typical – longitudinal shear design	
C10.4	Internal primary beams group P2, (B2 typical) longitudinal shear design	85
C10.5	Primary beams P1, (B1 typical) – longitudinal shear design	
C10.6	Perimeter beams B19 to 21 and B49 to 51	88
C11. Floor System Design Review and Final Decisions		89
C11.1	Floor design review	89
C11.2	Final floor framing plan and deck reinforcement	
C12. Final	Design of RC Columns	
C13. Detai	led Design of the Core	
C13.1	Preliminary discussion and statement of limitations of this section	
C13.2	Basic modelling of the core using beam elements	
C13.3	The Space Gass Analysis Model	
C13.4	Model verification and static deflections for W _s	
C13.5	Dynamic analysis for natural frequency of building	
C13.6	Interpretation and application of stress resultants from Space Gass	
C13.7	Further investigation of the core using a Strand7 finite element model	
C13.8	Review of core investigations	
C14. Steel Connection Design		
C14.1	Can it be built?	
C14.2	Representative connections	
C14.3	Web side plate connection design for $V^* = 142$ kN	
C14.4	Flexible end plate connection for $V^* = 2/9$ kN	
C14.5	B2 to core web side plate connection for $V^* = 308$ kN	
C14.6	Column splice for a load of $N^{*} = 1770$ kN	
C14.7	Column base plate for a load of N [*] = 1770 kN	
C15. Web Penetrations		
C16. Some		
Appendix I	I heory and discussion – composite slabs	
Appendix II Theory and discussion - composite beams		
Appendix III Dynamic assessment of the floor system		
Appendix I	V I neory and discussion steel connections	
Appendix \	Corrosion and fire protection	

IV IV