43 - GLOBAL WARMING, CLIMATE CHANGE AND GALVANIZING

INTRODUCTION

As the climate change debate heats up, all industries need to look at the carbon footprints they make and develop strategies to ensure this footprint is minimised and that their products will have the 'green' credentials to meet future environmental responsibilities.

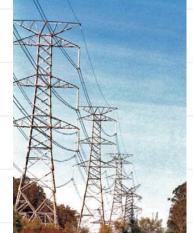
Steel is obviously one product that is essential for the construction and manufacturing industries, while also requiring significant amounts of energy for its extraction and refining. It not only requires energy to smelt it and refine it, but is also a large carbon consumer in the use of coal (transformed into coke) to reduce the iron ore to metal.

Zinc is the other metal that has a vital role to play in ensuring the durability of steel structures and products, and it too requires energy for its extraction and refining. While some pyro-metallurgical technologies are use for zinc refining, it is predominantly an electrolytic process, requiring significant amount of power for this process. The source of the power may be from coal fired power stations on mainland Australia, to hydro-electric power in Tasmania.

100% of the zinc used by Industrial Galvanizers is either sourced as prime metal from Nyrstar in Tasmania using hydro-electricity or as recycled zinc generated by residue reprocessing in Industrial Galvanizers Auszinc Alloys facility in Port Kembla, NSW.

In addition, the energy component of the hot dip galvanizing process itself is very low. Although all of Industrial galvanizers plants around Australia heat their galvanizing baths with gas, the relatively low temperatures (455°C) required to keep the zinc molten mean that energy costs represent only about 5% of the cost of production.

Industrial Galvanizers Australian Galvanizing Division has had an ongoing energy management program operating for over 10 years that has reduced the energy usage across the Galvanizing Division by almost 50% using waste heat recovery, improved insulation and improved burner management systems. For these reasons, the zinc component in the galvanizing of steel has a small carbon footprint, almost all of which is in the form of natural gas, which makes a significantly lower CO₂ contribution than that of coal fired electricity.


THE GALVANIZED STEEL EQUATION

It is obvious that any manufacturing operation involving the extraction, smelting, refining and processing of metals requires significant amounts of energy. Galvanized steel is no exception and the sustainability of the end product will be measured by the amount of energy required to produce it in the first place against its durability and ability to be recycled hot dip galvanized steel is among the world's most durable materials of construction.

In other than very aggressive corrosion environments, most hot dip galvanized structures will provide a service life of 50 years or more, with ongoing case-history studies indicating that 100 years + is achievable in many structural applications.

Galvanized steel structures such as these transmission towers have a long service life exceeding 50 years and are 100% recyclable. In addition, the steel could be re-galvanized for a minimal energy cost to preserve the steel indefinitely.

The galvanizing process has a relatively small carbon footprint because of the low temperature (425 degrees C) required to melt the zinc.

- typically 3-5% of the tonnage of steel protected. At the end of the steel's service life, this zinc coating has been largely removed by the corrosion mechanisms that determine the service life of the galvanized coating, leaving the steel to be recycled.

GALVANIZED STEEL - THE ENERGY EQUATION.

The amount of energy use in producing a tonne of galvanized steel will also determine its greenhouse (CO₂) contribution. The following figures one energy usage for steel manufacture have been obtained from OneSteel and BlueScope steel who make all Australian steel between them. The zinc energy cons information comes from Nyrstar, who has zinc refineries in Hobart, Tas. and Port Pirie, SA

Steel must have an anti-corrosion coating for most external applications and ensuring long service life for steel

and is the world's largest zinc producer, while the energy usage of *and ensuring long service life for steel* the hot dip galvanizing process is derived from galvanizing industry *enhances its environmental credentials*. average operating statistics.

Nyrstar has adopted a standardised fossil fuel protocol for its energy use statistics from its Hobart operations to bring them in line with its other Australian and International refining operations. This effectively doubles its theoretical CO_2 contribution compared to its actual contribution, as the Nyrstar Hobart refinery was large a user of hydro-electric power. Since Tasmania has connected to the Victorian coal-fired power grid through the Bass Link project, the method of calculation for CO_2 emissions has been changed to reflect that.

Table 1 lists the typical energy consumption for each component of the hot dip galvanizing process.

TABLE 1

IABLE						
Materia	al/Process	Gigajoules/tonne	CO_2 Contribution – kg CO_2			
			tonne		$\square) / \langle \rangle$	
	Steel	20	1800			692
	Zinc*	15	250			
Hot	dip galvanizing	2.5	40			
Hot	dip galvanizing	2.5	40	1		

* The energy use figures for Nyrstar have been taken from the Hobart (Risdon) plant data whose primary product is zinc. The CO₂ emissions from the Port Pirie arise from more complex operations, with the primary product being lead, with only 15% of the site's production being zinc

Using this data, an accurate estimate can be made for the total energy use/CO₂ contribution embodied in one tonne of hot dip galvanized structural steel with an average zinc pick-up of 4%. This is shown in Table 2. **TABLE 2**

Material	Weight	22	Gigajoules	CO ₂ contribution - kg
Steel	1000 kg		20	1800 kg
Zinc	40 kg		0.6	10
Hot dip galvanizing	N/A		2.5	40
TOTAL				1850 kg/t

It should be noted that the zinc smelters/refiners in particular produce significant volumes of commercially valuable by-products from the refining operations, including sulfuric acid, silver, copper and gold whose energy consumption is included in the figures used above.

It can be seen that the relatively small energy contribution made by the galvanizing process (3.1 gigajoules – 50 kg/t of CO_2) has a significant effect in preserving the energy already embodied in the manufacture of 1 tonne of steel for the practical service life of most steel structures.

43 - GLOBA	L WARMING.	CLIMATE	CHANGE	AND GA	LVANIZING
	,	• =			

In addition, the re	cycling of s	steel uses a	approximat	tely 25% o	f the energ	y required	to make st	eel from
raw materials so t	he overall	equation fo	or steel sec	tions made	e from scra	p steel wo	uld reflect a	a total
energy usage of v	vell under ⁻	10 gigajoul	es per tonr	ne with a co	orrespondir	ng reductio	on in greenł	nouse
emissions.								

TVILLSAGNICO

01	SPECIFIERS MANUAL	
02	INDUSTRIAL GALVANIZERS COMPANY PROFILE	
03	ADHESION OF PROTECTIVE COATINGS	
04	BOLTING GALVANIZED STEEL	
05	BURIED GALVANIZED STEEL	
06	CONCRETE DURABILITY & GALVANIZED REBAR	
07	CORROSION MAPPING	
08	COST FACTORS FOR HOT DIP GALVANIZED COATINGS	
09	CUSTOM COATING PACKAGES	
10	CUT EDGE PROTECTION	
11	DESIGNING FOR GALVANIZING	
12	ILLUSTRATED GUIDE TO DESIGN FOR GALVANIZING	
13	DEW POINT TABLES	
14	DIFFICULT STEELS FOR GALVANIZING	
15	DOCUMENTATION - CORRECT PAPERWORK ENSUES EFFICIENT PROCESSING	
16	ENVIRONMENTAL ISSUES FOR INDUSTRIAL COATINGS	
17	ZINC, HUMAN HEALTH AND THE ENVIRONMENT	
18	DEFECTS IN GALVANIZED COATINGS	
19	GALVANIC SERIES	
20	GLOSSARY OF GALVANIZING TERMS	
21	GUARANTEES FOR HOT DIP GALVANIZED COATINGS	
22	LIFE CYCLE COSTS OF INDUSTRIAL PROTECTIVE COATING SYSTEMS	
23	PAINTING OVER GALVANIZED COATINGS	
24	POWDER COATING OVER GALVANIZED COATINGS	
25	QUALITY AND SERVICE FACTORS AFFECTING GALVANIZED COATINGS	
26	RESTORATION OF PREVIOUSLY GALVANIZED ITEMS	
27	REPAIR OF GALVANIZED COATINGS	
28	STEEL STRENGTH AND HOT DIP GALVANIZING	
29	STANDARDS - AS/NZS 4680:2006	
30	STANDARDS - AUSTRALIAN AND INTERNATIONAL STANDARDS	
31	STEEL SURFACE PREPERATION	
32	SURFACE PREPERATION FOR PAINTING HOT DIP GALVANIZED COATINGS	
33	THICKNESS MEASUREMENT OF PROTECTIVE COATINGS	
34	WELDING GALVANIZED STEEL	
35	AN INTRODUCTION TO THE HOT DIP GALVANIZING PROCESS	
36	ZINC COATING PROCESSES - OTHER METHODS	
37	GALVANIZED COATINGS AND BUSHFIRE	
38	LIQUID METAL ASSISTED CRACKING OF	
	GALVANIZED STRUCTURAL STEEL SECTIONS	
39	GALVANIZING 500N GRADE REINFORCING BAR	
40	PREDICTING THE LIFE OF GALVANIZED COATINGS	
41	CHEMICALS IN CONTACT WITH GALVANIZED COATINGS.	
42	ATMOSPHERIC CORROSIVITY ASSESSMENT	
43	GLOBAL WARMING - CLIMATE CHANGE AND GALVANIZING	
44	STEEL - ITS CORROSION CHARACTERISTICS	
45		
46	WHITE RUST PREVENTION AND TREATMENT	

01 - SPECIFIERS MANUAL - THIRD EDITION

Industrial Galvanizers Australian Galvanizing Division (IGAG) operates nine galvanizing plants around Australia, ranging in size from large structural galvanizing facilities to specialised small plants designed to process small parts.

The Australian Galvanizing Division has galvanized in excess of 2 million tonnes of steel products in Australia since its first plant was commissioned in 1965 and is recognized for its ability to handle complex and difficult projects, as well as routine contracts.

This experience has been collated in the Specifiers Design Manual, to assist those involved in the design of steel products and projects to better understanding the galvanizing process and allow the most durable and cost-effective solutions to be delivered to these products and projects. All sections of this Third Edition have been completely updated and additional sections have been included to provide additional technical information related to the use of hot dip galvanized steel.

In addition to its Australian Galvanizing operations, Industrial Galvanizers Corporation has a network of manufacturing operations in Australia, as well as galvanizing and manufacturing businesses throughout Asia and in the USA.

The company's staff in all these locations will be pleased to assist with advice on design and performance of hot dip galvanized coatings and products. Contact details for each of these locations are located elsewhere in this manual.

This edition of the Industrial Galvanizers Specifiers Manual has been produced in both html and .pdf formats for ease of access and distribution and all documents in the Manual are in .pdf format and can be printed if paper documents are required.

The Specifiers Manual is also	accessible in its entirety	on the company's web site at	
www.ingal.com.au.	$(\mathcal{J}_{\mathcal{D}})$		

Additional copies of the Specifiers Manual are available on CD on request.

PUBLISHER:

Industrial Galvanizers Australian Galvanizing Division, PO Box 503, MOOROOKA QLD 4105 Ph: 07 38597418

EDITOR:

John Robinson, Mount Townsend Solutions Pty Ltd PO Box 355, JESMOND NSW 2299 Ph: 0411 886 884 Email: mt.solutions@optusnet.com.au

LAYOUT AND DESIGN:

Adrian Edmunds, Nodding Dog Design Ph: 0402 260 734 Email: adrian@noddingdogdesign.com Web: www.noddingdogdesign.com