In galvanic cathodic protection, sacrificial anodes of alloys of aluminium, magnesium or zinc are electrically connected to the steel needing protection (the cathode). If the steel and anode are both immersed in an electrically conductive medium such as seawater, galvanic action occurs creating an electric current that flows through the system. This causes the anode to corrode at the expense of the steel. The steel is thus protected. When the zinc anode has been consumed, it is replaced with a new anode.

In impressed current cathodic protection, a direct current from the positive terminal of an external power source is passed through an anode that is, in the case of a reinforced concrete member, a non-corroding mesh or similar embedded in the surface of the concrete. The circuit is completed by another connection from the reinforcing steel to the negative terminal of the power source. This form of corrosion protection is sometimes used in the remediation of corroding reinforcement in bridge piers, building facades and the like.

2 Fire protection

2.1 Introduction

In Australia, the level of fire protection for various classes of buildings is prescribed in the Building Code of Australia (BCA). The Fire Resistance Level (FRL) is defined in terms of:

- structural adequacy the structure must not deflect excessively or collapse;
- Integrity flames or hot gasses must not penetrate a floor or a wall required to provide fire protection; and
- Insulation the top surface of a floor or the face of a fire wall remote from a fire must not become hot
 enough to ignite items in contact with the floor or wall.

Beams and columns will usually need to satisfy structural adequacy only while floors and walls will need to satisfy all three requirements.

2.2 Determination of fire resistance

Fire resistance can be determined by two methods:

- deemed to satisfy, in accordance with the BCA, and
- fire engineering.

The required deemed to satisfy FRL for a particular building is dependent on:

- building classification (its proposed use);
- building height from the average ground level to the topmost occupied floor level;
- fire compartment area; and
- proximity to other buildings or fire source features.

The building classification is determined by the likelihood of a fire occurring, the likelihood that it will be allowed to develop, and the characteristics of the occupants (alert, mobile, infirm, etc) The height of a building determines the difficulty of fighting a fire and the difficulty of rescuing trapped occupants. The fire compartment area is the floor area surrounded by fire-resistant barriers. It is a measure of how large a fire can become before it is blocked by fire barriers. The proximity of other buildings and fire source features is about controlling the spread of fire beyond the property, or the proximity of other buildings or objects that may be the source of a fire.

Fire engineering uses rational methods to satisfy the FRLs required by the BCA. Aspects considered may include:

- the design of the structure;
- the provision of fire sprinklers and their controls such as valving;

- management systems adopted to increase sprinkler reliability;
- escape routes and escape times;
- consideration of, and systems adopted to reduce the likelihood of fire starts;
- the proximity of fire stations;
- laboratory or prototype fire testing; etc.

Fire engineering is a specialised subject, usually the province of professionals with appropriate training and experience. A fire-engineered solution is subject to approval by the relevant building authorities or building surveyor and the fire brigade who need to be satisfied that the performance requirements of the BCA have been achieved by the design.

Structural building codes such as AS 3600 – Concrete Structures and AS 4100 – Steel Structures describe measures that can be used in design to meet the deemed-to-satisfy requirements of the BCA. These requirements address only life safety; they do not address protection of the owner's financial investment in the building. The owner may require that fire protection measures additional to those required by the BCA be applied. This is a cost-benefit consideration.

2.3 Fire resistance of structural steel

The strength of steel varies with temperature. AS 4100 Clause 12.4 suggests the following relationship:

AS 1170.0 in clause 4.2.4 defines the fire limit state load as $G + \psi_I Q$. For office, retail, residential and parking floors, this load is G + 0.4Q, which is about 60% of the strength limit state load of 1.2G + 1.5Q.

Now AS 4100 defines in clause 12.5, the limiting temperature $T_1 = 905 - 690r_f$, where r_f is the ratio of the design action on the member under the design fire loading to the design member capacity, ϕR_u , at room temperature. The steel must be kept below this limiting temperature for the duration of the period specified in the BCA or determined by a fire engineering study for the FRL. If the ratio r_f is 60%, $T_1 = 905 - 0.6 \times 690 = 491^{\circ}$ C. This explains why 500° C is often quoted as the maximum allowable steel temperature, even though at this temperature the yield stress will nearly have halved.

The limiting temperature can be controlled by the application of applied insulation, with its effectiveness having been established in standard fire tests, or, for unprotected steel members, on the basis of exposed surface area to mass ratios. AS 4100 provides information to allow calculations to be undertaken for both of these approaches. For example, for an unprotected 460UB67 supporting a concrete slab, the time at which a temperature of 500° C is attained is calculated as:

- t = $-5.2 + 0.0221T + (0.433T / k_{sm})$
- t = $-5.2 + 0.0221 \times 500 + (0.433 \times 500 / 21.4)$
 - = 16 minutes

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Composite Design Example for Multistorey Steel Framed Buildings

Copyright © 2007 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2007 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Durack, J.A. (Connell Wagner) Kilmister, M. (Connell Wagner) Composite Design Example for Multistorey Steel Framed Buildings 1st ed.

Bibliography. ISBN 978-1-921476-02-0

- 1. Steel, Structural—Standards Australia.
- 2. Steel, Structural—Specifications Australia.
- 3. Composite, (Engineering)—Design and construction.
- I. Connell Wagner
- II. Australian Steel Institute.
- III. Title

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. The design examples contained in this publication have been developed for educational purposes and designed to demonstrate concepts. These materials may therefore rely on unstated assumptions or omit or simplify information. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. Any reference to a proprietary product is not intended to suggest it is more or less superior to any other product but is used for demonstration purposes only. The Australian Steel Institute, its officers and employees and the authors, contributors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility whatsoever for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, contributors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

Table of contents

Table of contents		
Preface		
Section A: INPUT INFORMATION		
A1. Client and Architectural Requirements		
A2. Site Characteristics		
A3. Statutory Requirements		
A4. Serviceability		
A5. Design Loads		
A6. Materials and Systems	10	
A7. Design Aids and Codes		
Section B: CONCEPTUAL AND PRELIMINARY DESIGN		
B1. Conceptual and Preliminary Design	13	
B1.1 Consideration of alternative floor framing systems– Scheme A	14	
B1.2 Consideration of alternative floor framing systems– Scheme B	15	
B1.3 Framing system for horizontal loading – initial distribution of load	16	
B1.4 Alternatives for overall distribution of horizontal load to ground	17	
B2. Preliminary Slab Design	21	
B3. From Alternatives to Adopted Systems	22	
B3.1 Adopted floor framing arrangement	22	
B3.2 Adopted framing arrangement for horizontal loading	23	
B4. Indicative Construction Sequence and Stages	24	
B4.1 The importance of construction stages in composite design	24	
B4.1 Indicative construction sequence and construction stages	25	
B4.2 Adopted construction sequence for design of erection columns	27	
B4.3 Core construction alternatives	27	
B4.4 Adopted construction method for the core	27	
B5. Preliminary Sizing of Primary and Secondary Beams	28	
B6. Plenum Requirements and Floor to Floor Height		
B7. Prelimary Column Sizes and Core Wall Thickness	33	
Section C: DETAILED DESIGN	35	
C1. Detailed Design - Introduction	36	
C2. Design Stages and Construction Loading	37	
C3. Detailed Load Estimation After Completion of Construction	38	
C3.1 Vertical loading	38	
C3.2 Wind loading.	39	
C3.3 Seismic loading Not considered	40	
C4. Erection Column Design		
C4.1 Load distribution for erection column design	42	
C4.2 Side Column C5 (typical of C5 to C10)	43	
C4.3 End column C2 (typical of C2, C3, C12 and C13)	44	
C4.4 Corner column C1 (typical of columns C1, C4, C11 and C14)	44	
C5. Floor Beams – Construction Stage 1	45	
C5.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – B41, B43 – 48)	45	
C5.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 to B12, B18,	46	
B19 – 21, B49 – 51 and B42)	46	
C5.3 Primary beams Group P2(9250, 6600) (B2, B6, B13 and B17)	47	
C6. Floor Beams – Construction Stage 3	48	
C6.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – 41, B43 – 48)	48	
C6.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 - B12, B18 – 21,	49	
B49 – 51 and B42)	49	
C6.3 Primary beams Group P2(9250, 6600) (Beams B2, B6, B13, B17)	49	
C7 Floor Beam Design for Occupancy Loading		
C7.1 Secondary beams Group S1(11 050, 2800) (Beams B19, B21, B22 - B41,	51	
B43 – B49 and B51)	51	

Ш

C7.2	Primary beams Group P1(9800.5725) (Beams B1, B7 to B12, B18)	
C7.3	Primary beams group P2(9050, 6600) (Beams B2, B6, B13, B17)	
C8. Assessment of Dynamic Performance of Floor System		
C8.1	Definition of the dynamic assessment process	69
C8.2	Application of the dynamic assessment process	73
C9 Final Slab Design		
C9.1	Slab design for the office areas	79
C9.2	Slab design for the compactus areas	80
C10. Longitudinal Shear Reinforcement Design		
C10.1	Introduction	81
C10.2	Proprietory longitudinal shear reinforcement products	83
C10.3	Secondary beams group S1, B22 typical – longitudinal shear design	
C10.4	Internal primary beams group P2, (B2 typical) longitudinal shear design	85
C10.5	Primary beams P1, (B1 typical) – longitudinal shear design	
C10.6	Perimeter beams B19 to 21 and B49 to 51	88
C11. Floor System Design Review and Final Decisions		89
C11.1	Floor design review	89
C11.2	Final floor framing plan and deck reinforcement	
C12. Final	Design of RC Columns	
C13. Detai	led Design of the Core	
C13.1	Preliminary discussion and statement of limitations of this section	
C13.2	Basic modelling of the core using beam elements	
C13.3	The Space Gass Analysis Model	
C13.4	Model verification and static deflections for W _s	
C13.5	Dynamic analysis for natural frequency of building	
C13.6	Interpretation and application of stress resultants from Space Gass	
C13.7	Further investigation of the core using a Strand7 finite element model	
C13.8	Review of core investigations	
C14. Steel Connection Design		
C14.1	Can it be built?	
C14.2	Representative connections	
C14.3	Web side plate connection design for $V^* = 142$ kN	
C14.4	Flexible end plate connection for $V^* = 2/9$ kN	
C14.5	B2 to core web side plate connection for $V^* = 308$ kN	
C14.6	Column splice for a load of $N^{*} = 1770$ kN	
C14.7	Column base plate for a load of N [*] = 1770 kN	
C15. Web Penetrations		
C16. Some		
Appendix I	I heory and discussion – composite slabs	
Appendix II Theory and discussion - composite beams		
Appendix III Dynamic assessment of the floor system		
Appendix I	V I neory and discussion steel connections	
Appendix \	Corrosion and fire protection	

IV IV