Fabrication Automation

Why Bother?

Automation Brings

Lower investment

- Lower operating costs
- Better Quality
- Faster Delivery
- Happier customers
- More customers
- Better margins
- Greater capability

Automation Reduces

- Delivery times
- Stock levels
- Mistakes
- Reliance on suppliers
- Floor space
- Disputes

Large or Small – You Can't Afford not to Automate

Six trends

- Higher output per hour from existing machines for similar prices
- Faster setup for small jobs
- Low cost machines for low volumes
- Low cost systems for high volume small parts
- Much simpler operation for easier training
- More processing per set up

Automation for large and small

Systems for 100,000 tpa

Systems for 2,000 tpa

Traditional Beam Line

Traditional Large System

Material Flow based

Alternative View of Automation

Typical Balance sheet

Conventional Operations

Annual capacity (tpa)	2,000	3,000	5,000	10,000
Current Technology				
Land and buildings	2,450,000	3,500,000	5,000,000	8,800,000
Cranes - handling eqpt.	250,000	350,000	450,000	800,000
Metal working, welding, painting	250,000	350,000	650,000	1,500,000
Weeks Stock	7	7	7	7
Value per tonne	5000	4700	4600	4500
Stock, WIP and held deliveries	1,300,000	1,900,000	3,100,000	6,100,000
Total capital employed	4,400,000	6,100,000	9,200,000	17,000,000

Typical Balance sheet

Highly Automated Operation

Capacity (tpa)	2000	3000	5000	10000
Latest technology				
Land and buildings	1,800,000	2,300,000	3,300,000	5,300,000
Cranes & handling equipment	200,000	300,000	400,000	600,000
Metal working, welding, paint	1,100,000	1,900,000	3,000,000	5,400,000
Weeks Stock	4.5	4.5	4.5	4.5
Value per tonne	4600	4400	4250	4100
Stock & WIP-held deliveries	800,000	1,150,000	1,800,000	3,500,000
Total capital employed				
	3,900,000	5,600,000	8,400,000	15,000,000
Capital improvement	400k	500k	700k	2,200k
	9%	8%	8%	13%

How does Automation reduce investment

- Less Land and Buildings
 - cutting/drilling/coping/scribing
 50% less space
 - Robot welding
 - 40-60% less space
 - Automatic painting 40-60% less space
 - Stock & finished goods 30-70% less space

Reduced Space

> Real Customer

- Existing Output 1 tonne/m²
 - not including beam drilling cutting or painting
 - effectively 0.7 tonnes per sq.m
- Proposed Layout 2 yrs ago-1.8 tonnes/m²

Including beam cutting drilling and all painting

Next Generation layout- 3-4 tonnes/m²

Including all processing

2 Year old Layout

How does Automation reduce Investment

- Less stock
 - Incoming raw material not semi processed
 Value reduced x \$200-400/tonne
 - Short Cycle time through shop
 - 2 days vs 5-10 means less WIP
 - No stock in transit to painter
 - Later start means fewer held jobs
 - Fewer mistakes/delays means less withheld acceptance for payment

Reducing cost of Investment

Fabricator

- 10 parts per hour
- Cost 30 x Operator
- Relative cost **300%**
- Fabricator XRP
 - 18 parts per hour
 - Cost 12 x Operator
 - Relative cost 66%
- Gemini HP
 - 17 parts per hour
 - Cost 7 x operator
 - Relative cost 41%
- Gemini HD 30%

How does Automation lower Operating Costs

- Lower process costs
- In house drilling <\$1.00/hole
 - Service Centre ~ \$3:00/hole
- In house plate cutting \$1.50/m
 - Steel service centre \$4:00/m
- Typical outside cutting/drilling
 - \$250 per tonne.
- In house costs
 - @ 2000 tonnes/yr ~ \$150/tonne
 - @ 5000 tonnes/yr < \$130/tonne</p>

How does Automation lower Operating Costs

- Current technology
 - Faster fabrication
 - Scribing almost eliminates layout
 - Automated coping 5-10 times as fast as manual
 - More accurate parts drastically reduce fit-up time
- Emerging Technology
 - Robot welding
 - 2-4 times output of manual systems
 - Automated painting
 - 2-3 times output of manual systems

Traditional Method-2 hrs

Coping Robot- 5 mins

Modern vs 10 yr old Technology

- Bandsaw 180mm²/min vs 50
- 22mm Drill 400-900mm/min vs 100
- Plasma
 - 12 mm 4.4m/min vs 1.4
 - 20 mm 2.8m/min vs 0.9
- Robot welding 40-50m/hr vs manual 5-12

Increasing Margin

- In house drilling costs <\$1.00/hole
 - Service Centre ~ \$3:00/hole
- In house plate cutting \$1.50/m
 - Steel service centre \$4:00/m
- Typical outside cutting and drilling costs \$250 per tonne.
- In house costs
 - @ 2000 tonnes/yr ~ \$150/tonne
 - @ 5000 tonnes/yr < \$130/tonne</p>

Increasing Value added

- Plate machining, scribing, marking and cutting in one place
- Base plate 700 x 400 x 30
 - 4 x 26 mm holes
 - Surface prep to reduce welding . 180 sq. cm.
 - - Part No. engraving
- Cycle Time for part: 2.8 Mins

Scribing for Quick Part Matching

Auto-Fit Beam

The Drill Line can scribe mark for plate weld lines, plate ID, burn lines, and holes.

ON ALL FOUR SIDES!

The Plate Processing line can make holes, plate ID, scribe lines, and burn shape.

🔆 TEKLA

Scribing to eliminate errors

* TEKLA

Auto-Fit Beam

Working Towards a Paperless System, Error Free Workshop

SCRIBED OUTLINE OPTIONS

Increasing Value added

 Beam cutting, drilling, tapping, marking, scribing, coping in one pass

Fully processed parts

Systems sized for You

- Three spindle Beam lines with saw & coping
 - 150-250 tonnes/week
 - \$0.8-1.5m
- Single spindle 3 axis with saw
 - 120-200 tonnes week
 - \$450-800k
- Single spindle 2+1 axes w/o saw
 - 50-80 tonnes/week
 - \$250-300k

Different styles for different Businesses

Some businesses have limited sizes but not much volume.

Some businesses have large range of parts

High throughput limited size range

Wide size range, many processes Lower throughput

Systems sized for You

- Plate Punching, Drilling, Marking, Cutting Machines
 - \$700-1,200k
 - Very fast particularly on thinner parts
- Moving Plate Drilling/marking Scribing, Cutting
 - \$500-750k
 - Fast on small thicker parts

Systems sized for You

- Moving Gantry Drilling/Milling, Marking Scribing Cutting
 - \$400-1,700k
 - Versatile best for larger or more complex parts
- Moving Gantry Drilling, marking, scribing, cutting
 - \$220-\$1,400k
 - Best for simpler and large parts

Improving Customer Service

- Fewer mistakes
- Much shorter leadtime
- Better fit-up
- Quicker installation

Emerging Technology

- Linking Detailing directly to fabrication
- Robot Welding
- Automatic painting

Automation - Do it or Die

- Concrete has 75% of market for multistorey offices
- More and more steel frames are being imported
- Your surviving competitors are automating
- You can reduce your cost per tonne after materials by more than half.

Digitally Linked Workflow

Tekla design model Detailed Tekla model Production drawings and reports Project mgmt with 🌤 TEKLA 3D model 影 **Steel Projects** Ficep **Project tracking Steel Projects Steel Projects** CNC fabrication, Estimation / Production Marking Purchasing -----planning -----...... **Steel Projects** -FICEP 2 1¥:

Robotic Welding

- Robotic welding
 - 3-6 times deposition rates
 - More consistent quality
 - Shorter lead times
 - Better work environment
 - Allows high speed processes e.g. twin wire Mig

Painting Productivity

- Painting System for 10 tonne per hour operated by one man
- > Welded to truck < 3hrs</p>
- Saves 600 sqm of floor space cranes lighting etc.
- > Reduces storage space

Painting

Blasting, Painting, Drying

