$$M_{c} = 1.11 M_{y} \left(I - \frac{10M_{y}}{36M_{o}} \right) \qquad \text{for } 2.78 M_{y} > M_{o} > 0.56 M_{y} \qquad (5.23)$$

$$M_c = M_o$$
 for $M_o \le 0.56 M_y$ (5.24)

They are included for all cases in AS/NZS 4600:2005 as Eqs (3.3.3.2(3))-(5). They have been confirmed by research on purlins in Ref. 5.7 and on beam-columns in Refs 5.8 and 5.9. They are compared with the former equations in AS/NZS 4600:1996 Clause 3.3.3.2(b) in Fig. 5.8. It can be seen that the 2005 equations are significantly above the 1996 equations for beam non-dimensional slenderness values greater than approximately 1.0. The Eurocode 3 Part 1.3 (Ref. 1.20) beam design curve is also shown in Fig. 5.8 for comparison.

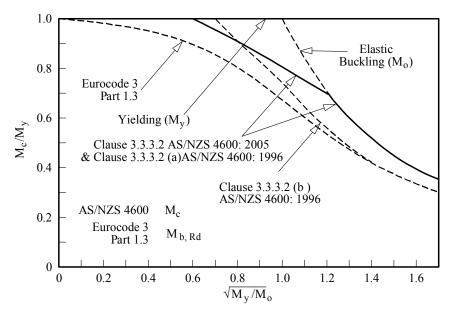


Fig. 5.8 Comparison of beam design curves

A detailed discussion of the lateral buckling strengths of unsheeted cold-formed beams is given in Ref. 5.10.

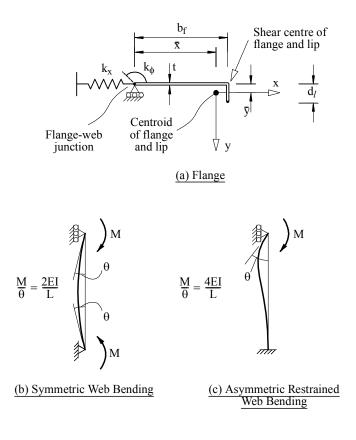
5.3 Distortional Buckling

5.3.1 Flange Distortional Buckling

5.3.1.1 <u>Compression Members</u>

Distortional buckling of compression members such as C-sections usually involves rotation of each flange and lip about the flange-web junction in opposite directions as shown in Fig. 1.18(a). This mode is often called 'flange distortional buckling'. The web undergoes flexure at the same half-wavelength as the flange buckle, and the whole section may translate slightly in a direction normal to the web also at the same half-wavelength as the flange and web buckling deformation. Distortional buckling in this mode has been investigated in detail by Hancock (Ref. 5.11) mainly for sections used in steel storage racks, by Lau and Hancock (Refs 5.12, 5.13, 5.14) for a range of different C- and rack sections, and by Kwon and Hancock (Refs 5.15, 5.16) for high strength steel channel sections with intermediate stiffeners.

The elastic distortional buckling stress (f_{od}) is based on the flexural-torsional buckling of a simple flange model developed by Lau and Hancock (Ref. 5.17) as shown in Fig. 5.9(a). The rotational spring (k_{φ}) represents the flexural restraint provided by the web which is in pure compression, and the translational spring (k_x) represents the resistance to translational


movement of the section in the buckling mode. As a result of the compressive stress in the web, the model includes a reduction in the flexural restraint provided by the web. The model as derived is not limited to simple flange-lip combinations but may involve complex lips with sloping stiffeners and/or return lips. In the Lau and Hancock model, it is assumed that the value of the translational spring stiffness (k_x) is zero so that the flange was free to translate in the *x*-direction in the buckling mode. The equation for the rotational spring stiffness (k_{φ}) is given by

$$\kappa_{\varphi} = \frac{Et^{3}}{5.46(b_{w}+0.06\lambda)} \left[1 - \frac{1.11f_{od}}{Et^{2}} \left(\frac{b_{w}^{2}\lambda}{b_{w}^{2}+\lambda^{2}} \right)^{2} \right]$$
(5.25)

where b_w is the web depth. In Eq. (5.25), λ is the half-wavelength of the distortional buckle given by:

$$\lambda = 4.80 \left(\frac{I_{xf} b_f^2 b_w}{t^3} \right)^{0.23}$$
(5.26)

where I_{xf} is the second moment of area of the flange and lip about the *x*-axis in Fig. 5.9(a). The spring restraint (k_{φ}) assumes the web is bent symmetrically as shown in Fig. 5.9(b). The term $(f_{od}^{'})$ is the compressive stress in the web at distortional buckling, computed assuming k_{φ} is zero. The computation process is iterative due to the incorporation of $f_{od}^{'}$ in Eq. (5.25), but only one iteration is required. These formulations are included in Appendices D1 and D2 of AS/NZS 4600.

Fig. 5.9 Flange distortional buckling model

Strength design curves were derived from test data in Kwon and Hancock (Ref. 5.16) and summarised in Hancock et al. (Ref. 5.18). They are described in detail in Chapter 7 of this book.

5.3.1.2 Flexural Members

Flange distortional buckling of flexural members such as C- and Z-sections usually involves rotation of only the compression flange and lip about the flange-web junction as shown in Fig. 1.18(b). The web undergoes flexure at the same half-wavelength as the flange buckle, and the compression flange may translate slightly in a direction normal to the web, also at the same half-wavelength as the flange and web buckling deformations. The web buckle involves double curvature transverse bending of the web as described in Hancock (Ref 5.19). A graph of buckling stress versus buckle half-wavelength is shown in Fig. 3.12. In this figure, it can be seen that the buckling stress for the short half-wavelength flange distortional buckling with transverse web bending when the tension flange of the C-section is restrained to prevent flexural-torsional buckling.

As for the compression member, the elastic distortional buckling stress (f_{od}) for flange distortional buckling is based on the flexural-torsional buckling of a simple flange model as shown in Fig. 5.9(a). The rotational spring (k_{φ}) represents the flexural restraint provided by the web which is in bending, and the translational spring (k_x) represents the resistance to translational movement of the section in the buckling mode. As a result of the compressive stress in the web resulting from bending, the model includes a reduction in the flexural restraint provided by the web. This reduction is different from that for the compression member given by Eq. (5.25). The equation for the rotational spring stiffness (k_{φ}) is given by:

$$k_{\varphi} = \left[\frac{2Et^{3}}{5.46(b_{w}+0.06\lambda)}\right] \times \left[1 - \frac{1.11f'_{od}}{Et^{2}} \left(\frac{b_{w}^{4}\lambda^{2}}{12.56\lambda^{4}+2.192b_{w}^{4}+13.39\lambda^{2}b_{w}^{2}}\right)\right]$$
(5.27)

where the symbols are the same as for Eq. (5.25). In Eq. (5.27), λ is the half-wavelength of the distortional buckle given by:

$$\lambda = 4.80 \left(\frac{I_{xf} b_f^2 b_w}{2t^3} \right)^{0.25}$$
(5.28)

where I_{xf} is the second moment of area of the flange and lip about the x-axis in Fig. 5.9(a).

The spring restraint (k_{φ}) assumes the web is bent asymmetrically as shown in Fig. 5.9(c).

As for compression, the term f_{od} is the compressive stress in the web at distortional buckling, computed assuming k_{φ} is zero. The computation process is iterative due to the incorporation of f_{od} in Eq. (5.27) but only one iteration is required. These formulations have been included in Appendix D3 of AS/NZS 4600.

Strength design curves were calibrated against test data in Hancock, Rogers and Schuster (Ref. 5.20). They have been included as Clause 3.3.3.3(a) of AS/NZS 4600. They are not the same as for compression members since it appears that the strength in bending is slightly higher than in compression.

Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney

fourth edition - 2007

CONTENTS

	F	Page
PREFACE 1	TO THE 4 th EDITION	viii
CHAPTER 1	INTRODUCTION	1
1.1 De 1.1.1 1.1.2	esign Standards and Specifications for Cold-Formed Steel General	1 1
1.1.2	Specifications	1 2
1.2 Co	ommon Section Profiles and Applications of Cold-Formed Steel	4
1.3 Ma	anufacturing Processes	10
1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7	Distortional Buckling Cold Work of Forming Web Crippling under Bearing Connections Corrosion Protection Inelastic Reserve Capacity	12 12 13 14 15 15 16 16
1.5 Lo	ading Combinations	17
1.6 Lir	nit States Design	17
1.7 Co	omputer Analysis	19
1.8 Re	eferences	20
CHAPTER 2	2 MATERIALS AND COLD WORK OF FORMING	22
2.1 St	eel Standards	22
2.2 Ty	pical Stress-Strain Curves	23
2.3 Du	actility	25
2.4 Ef	fects of Cold Work on Structural Steels	29
2.5 Co	orner Properties of Cold-Formed Sections	30
2.6.1 E 2.6.2 M 2.6.3 E	acture Toughness Background Measurement of Critical Stress Intensity Factors Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens	32 32 32 34 35
2.7 Re	eferences	36
CHAPTER 3	BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING	37
3.1 Int	roduction to the Finite Strip Method	37
3.2 Mo 3.2.1 3.2.2 3.2.3	onosymmetric Column Study Unlipped Channel Lipped Channel Lipped Channel (Fixed Ended)	38 38 41 44
3.3.1	Irlin Section Study Channel Section Z-Section	45 45 46

	3.4 3.4.7 3.4.2		47 47 48
	3.5	References	49
CI	HAPTE	R 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS	50
	4.1	Local Buckling	50
	4.2	Postbuckling of Plate Elements in Compression	51
	4.3	Effective Width Formulae for Imperfect Elements in Pure Compression	52
	4.4 4.4.7 4.4.2		56 56 56
	4.5 4.5.2 4.5.2 4.5.3	2 Intermediate Stiffened Elements with One Intermediate Stiffener	57 57 58 58 58
	4.6 4.6.7 4.6.2 4.6.3	2 Hat Section in Bending with Intermediate Stiffener in Compression Flange	59 59 63 68
	4.7	References	75
CI	HAPTE	R 5 BEAMS, PURLINS AND BRACING	76
	5.1	General	76
	5.2 5.2.7 5.2.2 5.2.3	2 Continuous Beams and Braced Simply Supported Beams	77 77 81 85
	5.3 5.3.7 5.3.2	5 5	86 86 89
	5.4 5.4.1 5.4.2 5.4.3	2 Stability Considerations	89 89 92 94
	5.5 5.5.7 5.5.2 5.5.3	2 Lateral Restraint but No Torsional Restraint	95 95 95 96
	5.6	Bracing	98
	5.7 5.7.2 5.7.2	1 Sections with Flat Elements 1	01 01 02
	5.8 5.8.7 5.8.7 5.8.7 5.8.4	1Simply Supported C-Section Purlin12Distortional Buckling Stress for C-Section13Continuous Lapped Z-Section Purlin14Z-Section Purlin in Bending1	02 02 07 08 16
	5.5		~~

CHAPTE	R 6 WEBS	125
6.1	General	125
6.2	Webs in Shear	125
6.2. 6.2.	0	125 127
6.3	Webs in Bending	127
6.4	Webs in Combined Bending and Shear	129
6.5	Web Stiffeners	130
6.6	Web Crippling (Bearing) of Open Sections	130
6.6. 6.6.	1 Edge Loading Alone	130 133
6.7	Webs with Holes	134
6.8	Examples	136
6.8.	1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section	Purlin 136
6.8.	2 Combined Bearing and Bending of Hat Section	138
6.9	References	139
CHAPTE	R 7 COMPRESSION MEMBERS	141
7.1	General	141
7.2	Elastic Member Buckling	141
7.2. 7.2.	, 3	141 143
7.3	Section Capacity in Compression	143
7.4	Member Capacity in Compression	144
7.4. 7.4.:		144 146
7.5	Effect of Local Buckling	147
7.5.	1 Monosymmetric Sections	147
7.5.		149
7.6 7.6.	Examples 1 Square Hollow Section Column	151 151
7.6.2	2 Unlipped Channel Column	153
7.6.3	3 Lipped Channel Column	157
7.7	References	164
CHAPTE	R 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING	165
8.1	Combined Axial Compressive Load and Bending - General	165
8.2	Interaction Equations for Combined Axial Compressive Load and Bending	166
8.3 8.3. 8.3.		167 167 169
8.4	Combined Axial Tensile Load and Bending	170
8.5	Examples	171
8.5. 8.5		171 174
8.5. 8.5.		174 176
8.6	References	180

v V

CHAPTER 9 CONNECTIONS	182
9.1 Introduction to Welded Connections	182
 9.2 Fusion Welds 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading 9.2.3 Fillet Welds subject to Longitudinal Loading 9.2.4 Combined Longitudinal and Transverse Fillet Welds 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds 	184 184 185 186 186 187 190
9.3 Resistance Welds	190
9.4 Introduction to Bolted Connections	190
 9.5 Design Formulae and Failure Modes for Bolted Connections 9.5.1 Tearout Failure of Sheet (Type I) 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) 9.5.4 Shear Failure of Bolt (Type IV) 	192 193 193 194 196
9.6 Screw Fasteners and Blind Rivets	196
9.7 Rupture	200
9.8 Examples 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example	201 201 205
9.9 References	208
CHAPTER 10 DIRECT STRENGTH METHOD	209
10.1 Introduction	209
10.2 Elastic Buckling Solutions	209
 10.3 Strength Design Curves 10.3.1 Local Buckling 10.3.2 Flange-distortional buckling 10.3.3 Overall buckling 	210 210 212 213
10.4 Direct Strength Equations	213
10.5 Examples 10.5.1 Lipped Channel Column (Direct Strength Method) 10.5.2 Simply Supported C-Section Beam	215 215 216
10.6 References	218
CHAPTER 11 STEEL STORAGE RACKING	219
11.1 Introduction	219
11.2 Loads	220
 11.3 Methods of Structural Analysis 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order 11.3.3 Beams 	221 222 223 223
 11.4 Effects of Perforations (Slots) 11.4.1 Section Modulus of Net Section 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) 	224 224 225 225
11.5 Member Design Rules11.5.1 Flexural Design Curves11.5.2 Column Design Curves	225 225 226

vi

11.5.3 Distortional Buckling	227
11.6 Example	227
11.7 References	235
SUBJECT INDEX BY SECTION	

