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They are included for all cases in AS/NZS 4600:2005 as Eqs (3.3.3.2(3))-(5).  They have been 
confirmed by research on purlins in Ref. 5.7 and on beam-columns in Refs 5.8 and 5.9.  They 
are compared with the former equations in AS/NZS 4600:1996 Clause 3.3.3.2(b) in Fig. 5.8.  It 
can be seen that the 2005 equations are significantly above the 1996 equations for beam non-
dimensional slenderness values greater than approximately 1.0. The Eurocode 3 Part 1.3 (Ref. 
1.20) beam design curve is also shown in Fig. 5.8 for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.8  Comparison of beam design curves 

 

A detailed discussion of the lateral buckling strengths of unsheeted cold-formed beams is given 
in Ref. 5.10. 
 
5.3 Distortional Buckling 
 
5.3.1 Flange Distortional Buckling 
 
5.3.1.1 Compression Members 

Distortional buckling of compression members such as C-sections usually involves rotation of 
each flange and lip about the flange-web junction in opposite directions as shown in Fig. 
1.18(a). This mode is often called ‘flange distortional buckling’.  The web undergoes flexure at 
the same half-wavelength as the flange buckle, and the whole section may translate slightly in a 
direction normal to the web also at the same half-wavelength as the flange and web buckling 
deformation.  Distortional buckling in this mode has been investigated in detail by Hancock (Ref. 
5.11) mainly for sections used in steel storage racks, by Lau and Hancock (Refs 5.12, 5.13, 
5.14) for a range of different C- and rack sections, and by Kwon and Hancock (Refs 5.15, 5.16) 
for high strength steel channel sections with intermediate stiffeners. 

The elastic distortional buckling stress (fod) is based on the flexural-torsional buckling of a 
simple flange model developed by Lau and Hancock (Ref. 5.17) as shown in Fig. 5.9(a).  The 
rotational spring (kφ) represents the flexural restraint provided by the web which is in pure 
compression, and the translational spring (kx) represents the resistance to translational 
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movement of the section in the buckling mode.  As a result of the compressive stress in the 
web, the model includes a reduction in the flexural restraint provided by the web.  The model as 
derived is not limited to simple flange-lip combinations but may involve complex lips with sloping 
stiffeners and/or return lips.   In the Lau and Hancock model, it is assumed that the value of the 
translational spring stiffness (kx) is zero so that the flange was free to translate in the x-direction 
in the buckling mode.  The equation for the rotational spring stiffness (kφ) is given by 
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where bw is the web depth.  In Eq. (5.25), λ is the half-wavelength of the distortional buckle given by: 
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where Ixf is the second moment of area of the flange and lip about the x-axis in Fig. 5.9(a).  The 
spring restraint (kφ) assumes the web is bent symmetrically as shown in Fig. 5.9(b).  The term 
( '

odf ) is the compressive stress in the web at distortional buckling, computed assuming kφ is 
zero.  The computation process is iterative due to the incorporation of  f ’

d o  in Eq. (5.25), but 
only one iteration is required.  These formulations are included in Appendices D1 and D2 of 
AS/NZS 4600. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9  Flange distortional buckling model 

 
Strength design curves were derived from test data in Kwon and Hancock (Ref. 5.16) and 
summarised in Hancock et al. (Ref. 5.18).  They are described in detail in Chapter 7 of this 
book. 
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5.3.1.2 Flexural Members 

Flange distortional buckling of flexural members such as C- and Z-sections usually involves 
rotation of only the compression flange and lip about the flange-web junction as shown in Fig. 
1.18(b).  The web undergoes flexure at the same half-wavelength as the flange buckle, and the 
compression flange may translate slightly in a direction normal to the web, also at the same 
half-wavelength as the flange and web buckling deformations.  The web buckle involves double 
curvature transverse bending of the web as described in Hancock (Ref 5.19).  A graph of 
buckling stress versus buckle half-wavelength is shown in Fig. 3.12.  In this figure, it can be 
seen that the buckling stress for the short half-wavelength flange distortional buckling is 
significantly less than that for the longer half-wavelength lateral distortional buckling with 
transverse web bending when the tension flange of the C-section is restrained to prevent 
flexural-torsional buckling.   
 

As for the compression member, the elastic distortional buckling stress (fod) for flange 
distortional buckling is based on the flexural-torsional buckling of a simple flange model as 
shown in Fig. 5.9(a).  The rotational spring (kφ) represents the flexural restraint provided by the 
web which is in bending, and the translational spring (kx) represents the resistance to 
translational movement of the section in the buckling mode.  As a result of the compressive 
stress in the web resulting from bending, the model includes a reduction in the flexural restraint 
provided by the web.  This reduction is different from that for the compression member given by 
Eq. (5.25).  The equation for the rotational spring stiffness (kφ) is given by: 
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where the symbols are the same as for Eq. (5.25).  In Eq. (5.27), λ is the half-wavelength of the 
distortional buckle given by: 
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where Ixf is the second moment of area of the flange and lip about the x-axis in Fig. 5.9(a). 
 
The spring restraint (kφ) assumes the web is bent asymmetrically as shown in Fig. 5.9(c).  
 

As for compression, the term f ’
d o  is the compressive stress in the web at distortional buckling, 

computed assuming kφ is zero.  The computation process is iterative due to the incorporation of 

f ’
d o  in Eq. (5.27) but only one iteration is required.  These formulations have been included in 

Appendix D3 of AS/NZS 4600. 
 

Strength design curves were calibrated against test data in Hancock, Rogers and Schuster (Ref. 
5.20).  They have been included as Clause 3.3.3.3(a) of AS/NZS 4600. They are not the same 
as for compression members since it appears that the strength in bending is slightly higher than 
in compression. 
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