Tubular Design Guide 20: Background and design basis

by

P.W. Key and A.A. Syam

first edition - 2014

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Tubular Design Guide 20: Background and design basis

Copyright © 2014 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2014 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Key, Peter W. Tubular Design Guide 20: Background and design basis / Peter W. Key, Arun A. Syam

ISBN 978 1 921476 29 7 (pbk.). Series: Structural tubular connection series. Includes bibliographical references. Steel, Structural—Standards - Australia. Structural engineering. Syam, Arun A. Australian Steel Institute. 624.1821021894

Also in this series: Tubular Design Guide 21: Bolted bracing connections Tubular Design Guide 22: Bolted bracing cleats Tubular Design Guide 23: Plate fitments Tubular Design Guide 24: Bolted planar connections Tubular Design Guide 25: Fully welded – Simple planar connections Tubular Design Guide 26: Fully welded – Gap planar connections Tubular Design Guide 27: Fully welded – Overlap planar connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

ii 👔

CONTENTS

5

		Page
Li	t of figures	iv
Li	t of tables	v
Pr	eface	vi
Ał	out the authors	vii
	knowledgements	viii
Л	Knowledgements	VIII
1	CONCEPT OF DESIGN GUIDES 1.1 Background	1 1
2	BASIS OF SSHS CONNECTION DESIG	GN
	TO AS 4100	2
	2.1 General considerations	2 2 3 5
	2.2 Forms of construction	3
	2.3 Connection design models	
	2.4 Connection characteristics	6
	2.5 Connection terminology	9
	2.6 Fatigue considerations2.7 Seismic considerations	10 11
		11
3	BACKGROUND TO SSHS	
	IMPLEMENTATION	12
	3.1 Advantages of SSHS for constructi	
	3.2 Australian production	13
	3.2.1 Background	13
	3.2.2 Cold-formed manufacturing	
	process	13
	3.2.3 Section availability	14
	3.2.4 Material properties	14
	3.3 International design context3.4 Australian design context	15 16
	3.5 International research	17
	3.6 Books and design manuals	18
	5.0 Dooks and design manuals	10
4	MATERIAL AND SECTION	
	PROPERTIES	19
	4.1 Properties of Australian SSHS	19
	4.1.1 Applicable standards	19
	4.1.2 Material properties	19
	4.2 Australian SSHS section sizes	20
	4.3 Design aspects related to Australian SSHS	24
	4.3.1 Influence of higher strength	21
	steel on SSHS connection	
	design	21
	4.3.2 Influence of yield to ultimate	21
	tensile strength ratio on SSH	IS
	connection design	21
	4.3.3 Design yield stress for	
	Australian produced SSHS	22
	4.3.4 Section classification	23
	4.4 Properties of plate materials	26
	4.4.1 Plate material	26

	442	Flat bar material	27
	7.7.2		Page
			- 3-
	4.4.3	Design yield stress for Australian produced plate	
		material	27
15	Polt t	/pes and bolting categories	27
		erties of bolts	20
	Weld		29 31
		erties of welds	33
		ational material sourcing	36
4.9		Background	36
		Material perspectives	36
		Product perspectives	37
		Bolt sourcing	37
		Welding consumables	38
		Product compliance	38
		Sample tests of imported	00
	4.5.7	product	39
	4.9.8	Third-party product	00
	4.0.0	certification	40
			40
DES	SIGN (CAPACITIES	42
		esign capacity	42
		design capacity-Fillet welds	44
		design capacity – Pre-	
		eered welds	47
		Stress distribution in profiled	
		fully welded SSHS connection	ns 47
	5.3.2	Prequalified fillet weld throat	
		thickness	47
	5.3.3	Weld matching	49
5.4	Other	connector types	54
5.5	Sectio	on design capacity	56
	5.5.1	Design section capacity in	
		axial tension	56
	5.5.2	Design section capacity in	
		axial compression	56
	5.5.3	Design section moment	
		capacity	57
	5.5.4	Design shear capacity of a	
		web	57
5.6		onent design capacities	59
		General	59
	5.6.2	Design capacity in axial tensi	
		for rectangular component	59
	5.6.3	Design shear capacity of	
		rectangular component	60
	5.6.4	Design moment capacity of	
		rectangular component	60
	5.6.5	Design capacity in axial	
		compression for rectangular	. .
		component	61
	5.6.6	Design capacity against ruptu	re
		due to block shear failure for	
		rectangular component	62

Ρ	a	q	е

6	DE	SIGN ACTIONS	65
	6.1	Minimum design actions	65

7 DETAILING AND STANDARDISATION	67
---------------------------------	----

- 7.1 Detailing of SSHS connections 67 7.1.1 Drainage and corrosion 67 7.1.2 Galvanizing 68 7.1.3 Recommended weld details 68
 - 7.1.4 General design considerations 69 71
- 7.2 Tolerances 7.3 Standardisation and rationalisation 72

8	TRUSS DESIGN CONSIDERATIONS	74
	8.1 Context	74
	8.1.1 Scope	74
	8.2 Classification of connections	75
	8.2.1 Connection classification	75
	8.3 Truss analysis	79

8.3.1 Analysis model configuration 79

				Page
	8.4	Truss	design	81
		8.4.1	Effective length for	
			compression members	81
		8.4.2	Guidance on member	
			selection	81
		8.4.3	Suggested truss design	
			procedure	82
	8.5	Truss	deflections	84
		8.5.1	Truss deflections	84
9			DESIGN GUIDES	85
	9.1	Plann	ed future design guides	85
10	REF	EREN	ICES	86

11 NOTATION AND ABBREVIATIONS 90

APPENDICES

А	SSHS section sizes	100
В	Limcon software	114

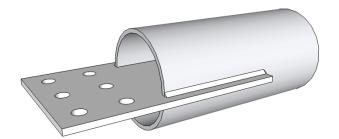
С ASI Design Guide comment form 115

LIST OF FIGURES

Page

Figure 2.1 Typical rigid connections 4 Figure 2.2 Typical semi-rigid connections 4 Figure 2.3 Typical simple connections 4 Figure 2.4 Moment-rotation characteristics of typical connections 6 Figure 2.5 Boundaries for stiffness calculation for beam-to-7 column connections Figure 2.6 Definition of connection elements 9 Figure 3.1 Typical cold-formed SSHS manufacturing process 14 Figure 4.1 Definition of element width for RHS flanges 25 Figure 4.2 Common structural weld types in AS 4100 31 Figure 5.1 Design throat thickness of fillet welds 46 Figure 5.2 Non-uniform stress distribution around connected face of SSHS brace member 47 Figure 5.3 Resolution of forces on throat of fillet weld 48 Figure 5.4 Connection configurations for checking weld matching 51 Figure 5.5 Lindapter hollobolt configuration 54 Figure 5.6 Huck ultra-twist process 54 Figure 5.7 Flowdrill process 55

Figure	5.8	Rectangular connection	
		component geometry	59
Figure	5.9	Rectangular component bent	
		about major axis	61
Figure	5.10	Rectangular component bent	
-		about minor axis	61
Figure	5.11	Examples of block shear	
•		failure in components	62
Figure	5.12	Block shear area in	
-		components	63
Figure	5.13	Block shear failure planes	
		inclined to the direction of the	
		applied load	64
Figure	7.1	Detailing of open and sealed	
		connections	67
Figure	7.2	Recommended weld details	69
Figure	7.3	Definition of gap and overlap	
		connections	70
Figure	7.4	Definition of bolt hole detailing	
		dimensions	72
Figure	8.1	Various types of truss	
		configuration	74
Figure		Various connection types	75
Figure	8.3	Examples of connection	
		classification	77
Figure	8.4	Classification of KT	
		connections	78
Figure	8.5	Planar truss connection	_
		modelling assumptions	80
Figure	8.6	Limits of noding eccentricity	80


Page

7 DETAILING AND STANDARDISATION


7.1.1 Drainage and corrosion

The interior of hollow section members may be either fully sealed by the connection details or by purpose configured seal plates, or may be left open. Both scenarios are illustrated in Figure 7.1 for the case of a slotted SSHS end connection. The decision as to the appropriate solution is influenced by a number of factors, including the intended environment for the finished member:

- 1. Fully (i.e. hermetically) sealed members ensure that the environment inside the SSHS member remains benign, precluding the supply of fresh oxygen that is required for continuing corrosion. However, the sealing must be effective, otherwise small holes and cracks can allow surprisingly large amounts of water to enter the SSHS member. In particular in cold and wet environments where freezing is likely, the SSHS may be split at the corners by the pressure of freezing water. A solution is to place a minimum nominal 10 mm diameter hole in a location that allows water to drain. The small amount of oxygen replenishment in these cases results in only a small amount of oxidation internally.
- 2. SSHS members with purpose open ends, such as shown in Fig. 7.1(a) may be used in benign internal environments where only very nominal internal corrosion would be expected.

(a) Section with open end

(b) Section with sealed end

FIGURE 7.1 DETAILING OF OPEN AND SEALED CONNECTIONS

67

7.1.2 Galvanizing

During galvanizing, fabricated steel members and assemblies are dipped into a molten zinc bath that is at an approximate temperature of 450°C for about 5 minutes. SSHS members which would otherwise have internal volumes that are sealed must have specific vent and draining holes detailed to ensure heated expanding air can escape and with a sufficient hole size for the molten zinc to drain. Hole size is based on the sectional size of the member, with suggested sizes given in Table 7.1, rationalised from galvanizer recommendation to hard metric sizes (Ref. 58). CIDECT Design Guide 7 (Ref. 65) also provides some guidance on preparation for galvanizing. Further information can also be obtained from the Galvanizer Association of Australia (www.gaa.com.au) and the Galvanizing Association of New Zealand (www.galvanizing.org.nz).

|--|

CHS nominal	RHS size	SHS size	Vent hole diameter (mm)	
bore (mm)	(mm)	(mm)	Single hole	Double hole
50			12	2 x10
65	50 x 20	50 x 50	16	2 x 12
80	75 x 50	65 x 65	20	2 x 14
100	100 x 50	75 x 75	25	2 x 18
125	125 x 75	100 x 100	32	2 x 22
150	150 x 100	125 x 125	38	2 x 27
200	200 x 100	150 x 150	50	2 x 35
250	250 x 150	200 x 200	63	2 x 45
300	300 x 200	250 x 250	75	2 x 54
350	350 x 250	300 x 300	88	2 x 63
400	400 x 300	350 x 350	100	2 x 70

SIZE OF VENT AND DRAIN HOLES FOR GALVANIZING SSHS MEMBERS

NOTE: For member sizes smaller than listed, use a minimum 10 mm diameter vent hole.

7.1.3 Recommended weld details

Figure 7.2 illustrates a range of recommended weld details for various locations on different connection configurations. Note the limitation on the minimum angle between the brace and chord member. Clause 4.5 of AS/NZS 1554.1 (Ref. 33) provides further guidance on prequalified joint preparations, including specific requirements for hollow section members.

