
4 DETAILING CONSIDERATIONS

DETAILING CONSIDERATIONS—CONNECTION ELEMENTS

- 1 8.8/T (fully tensioned) bolt category is used, with M20 or M24 bolt diameters.
- 2 Holes are 2 mm larger than the nominal bolt diameter.
- Fabrication of this type of connection requires close control in cutting the beam to length and adequate consideration must be given to squaring the beam ends such that end plates at each end are parallel and the effect of any beam camber does not result in out-of-square end plates which make erection and field fit-up difficult. Shims may be required to compensate for mill and shop tolerances (Figure 8).

It is recommended that beams generally not be cambered with this connection since the resulting beam rotation may cause field fit-up problems (Ref. 6). If camber must be provided, the detailing must be such as to achieve parallel end plates.

FIGURE 8 SHIMS USED BETWEEN END PLATE AND COLUMN FLANGE (after Ref. 6)

- 4 Flange butt weld preparations will require a backing strip which requires local coping of the beam web. The backing strip is usually left in place, although the structural engineer may require it to be removed for design situations involving fatigue or seismic considerations—which are not covered by the recommended design model of this DESIGN GUIDE.
- 5 Preference should be given to the use of fillet welds rather than butt welds, at least for fillet welds up to 8 mm leg length.
- A full penetration butt weld may shrink up to 2–3 mm when it cools and contracts. Such shrinkage can cause problems in erecting the frame to AS 4100 tolerances. This issue is best controlled by fabricating the beam longer than required by the amount of the weld shrinkage or by increasing the weld root opening.
- 7 Lamellar tearing of the end plate may be of concern especially for a thicker end plate. The correct welding procedure and sequencing should be employed (see Design Guide 2 for a discussion of lamellar tearing—Reference 16).
 - Lamellar tearing of the column flange may be of concern when there is a stiffener weld on one side which is shrinking and contracting. The correct welding procedure and sequencing should again be employed (see Design Guide 2 for a discussion of lamellar tearing—Reference 16).
- 8 End plates will typically be Grade 250 plate material complying with AS 3678 (Ref. 7).

Design Guide 12 Bolted end plate to column moment connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 12 Bolted end plate to column moment connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 12: Bolted end plate to column moment connections

1st ed.

Bibliography.

ISBN 978 1 921476 14 3 (pbk.). ISBN 978 1 921476 15 0 (pdf.).

1. Steel, Structural—Standards-Australia.

- Steel, Structural—Specifications-Australia. 2.
- 3. Joints, (Engineering)—Design and construction.
- ١. van der Kreek, N.
- Australian Steel Institute. П.

(Series: Structural steel connection series).

Also in this series:

Handbook 1: Design of structural steel connections Design Guide 1: Bolting in structural steel connections Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections Design Guide 4: Flexible end plate connections Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 10: Bolted end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

design guide 12:

bolted end plate to column moment connections, first edition

This publication originated as part of

Design of structural connections

First edition 1978

Third edition 1988

Fourth edition 1994

Second edition 1981

CONTENTS

		Pa	age				age
Lis	t of fig	ures	iv		10.5	DESIGN CHECK NO. 14—Column	40
	t of tal	bles	vi		10.6	web compression buckling DESIGN CHECK NO. 15—Column	49
Preface			vii 		10.6	web panel in shear	50
			viii viii	11	DECC	DMMENDED DESIGN MODEL—	00
About the contributing author Acknowledgements			ix	11		JMNS WITH DOUBLER PLATES	51
		CEPT OF DESIGN GUIDES				DESIGN CHECK NO. 16—Local	.0.
•	1.1	Background	ı 1			bending of column flange with	
2		CRIPTION OF CONNECTION	-			flange doubler plates at beam	
					44.0	tension flange	51
		CAL DETAILING OF CONNECTION			11.2	DESIGN CHECK NO. 17—Local yielding of column web with doubler	r
		ILING CONSIDERATIONS				plate(s) at beam tension flange	52
5	AS 41	00 REQUIREMENTS	12		11.3	DESIGN CHECK NO. 18—Local	-
6	BASIS	S OF DESIGN MODEL	13			yielding of column web with doubler	r
7	CALC	ULATION OF DESIGN ACTIONS	15			plate(s) at beam compression	
8	RECC	OMMENDED DESIGN MODEL—			44.4	flange	54
_		MARY OF DESIGN CHECKS	21		11.4	DESIGN CHECK NO. 19—Crippling of column web with doubler plate(s)	
9	RECC	OMMENDED DESIGN MODEL	26			at beam compression flange	55
	9.1	DESIGN CHECK NO. 1—Detailing			11.5	DESIGN CHECK NO. 20—	
		requirements	26			Compression buckling of column	
	9.2	DESIGN CHECK NO. 2—Design	00		44.0	web with doubler plate(s)	57
	9.3	capacity of flange welds to beam DESIGN CHECK NO. 3—Design	28		11.6	DESIGN CHECK NO. 21—Column web panel with doubler plate(s) in	
	9.5	capacity of web welds to beam	29			shear	59
	9.4	DESIGN CHECK NO. 4—Design		12	RECC	DMMENDED DESIGN MODEL—	
		capacity of bolts at tension flange	31	12		JMNS WITH TRANSVERSE	
	9.5	DESIGN CHECK NO. 5—Design				ENERS	.61
	0.6	capacity of bolts in shear	33		12.1	DESIGN CHECK NO. 22—Column	
	9.6	DESIGN CHECK NO. 6—Design capacity of end plate at				with transverse stiffeners at tension	
		tension flange	34		12.2	flange DESIGN CHECK NO. 23—Column	61
	9.7	DESIGN CHECK NO. 7—Design			12.2	with transverse stiffeners at	
		capacity of end plate in shear	38			compression flange	65
	9.8	DESIGN CHECK NO. 8—Design			12.3	DESIGN CHECK NO. 24—Column	
		requirements for stiffener to end plate	39			with transverse diagonal shear	
	9.9	DESIGN CHECK NO. 9—Design	00			stiffeners	67
		capacity of stiffener welds to		13	ADDI	TIONAL CONSIDERATIONS	.69
		end plate	40	14	ECON	NOMICAL CONSIDERATIONS	.70
10		DMMENDED DESIGN MODEL—		15		GN EXAMPLE	.71
		TIFFENED COLUMN	41		15.1	Design example—Four bolt	
	10.1	DESIGN CHECK NO. 10—Local bending of column flange at beam				unstiffened end plate to column connection	71
		tension flange	41	40	DEEE		
	10.2	DESIGN CHECK NO. 11—Local				RENCES	_
		yielding of column web at beam		17		GN CAPACITY TABLES	
	40.0	tension flange	44			Four bolt unstiffened end plate Four bolt stiffened end plate	81 85
	10.3	DESIGN CHECK NO. 12—Local yielding of column web at beam				Six bolt unstiffened end plate	87
		compression flange	45		17.4	Eight bolt stiffened end plate	89
	10.4	DESIGN CHECK NO. 13—		ΑP	PEND	DICES	
		Column web crippling at beam		•	A	Thick and thin end plate behaviour	90
		compression flange	47		В	Limcon software	92
					С	ASI Design Guide 12	07
						comment form	97

LIST OF FIGURES

	Page		Page
Figure 1	Bolted end plate to column moment connections 2		Clearance dimensions a_f and s_{po} 27
Figure 2	Forms of extended end plate	=	End plate stiffener detailing27
rigule 2	connection 3	_	Flange weld design actions28
Figure 3	Possible configurations of the	•	Web weld design actions30
J	bolted moment end plate beam to column connection 4	_	Yield line pattern 4 bolt (2/2) unstiffened end plate34
Figure 4A	Typical detailing for 4 bolt unstiffened bolted end plate to	_	Yield line pattern 4 bolt (2/2) stiffened end plate35
	column connection5	Figure 30	Yield line pattern 6 bolt (2/4)
Figure 4B	Typical detailing for haunched rafter to column bolted end plate	Figure 31	unstiffened end plate
	connection6	F: 00	unstiffened end plate
Figure 5	Removal of column flange with thicker plate inserted 6	_	Yield line pattern 8 bolt (4/4) stiffened end plate37
Figure 6	Column doubler plate types 7	Figure 33	Yield line pattern 4 bolt (2/2)
Figure 7	Column transverse stiffener types 8		end plate to unstiffened column flange41
Figure 8	Shims used between end plate and column flange 9	Figure 34	Yield line pattern 2/4(6) bolt end plate to unstiffened
Figure 9	Stiffener detailing 10		column flange42
Figure 10	Clearance required for tensioning bolts 11	Figure 35	Yield line pattern 2/6(8) bolt end plate to unstiffened column
Figure 11	Design actions on beam at		flange42
Figure 12	Calculation of flange forces due to bending moment and axial	Figure 36	Yield line pattern 4/4(8) bolt end plate to unstiffened column flange43
	force—horizontal beam 16	Figure 37	Flange removed with new plate
Figure 13	Calculation of force components		inserted43
	where beam is inclined to column in upwards direction	Figure 38	Application of c_t term—Column web yielding at beam tension
Figure 14	Calculation of force components		flange44
E: 45	where beam is inclined to column in downwards direction	Figure 39	Application of c_t term—Column web yielding at beam
Figure 15	Alternative stress distributions in beam	F: 40	compression flange45
Figure 16	Notation used for 4 bolt (2/2)	-	Angle of dispersion used in DESIGN CHECK NO. 1246
Figure 17	unstiffened end plate	Figure 41	Dispersion arrangement used in DESIGN CHECK NO. 1446
F: 40	stiffened end plate	_	Case I arrangement47
Figure 18	Notation used for 8 bolt (4/4) stiffened end plate	Figure 43	Case II and case III arrangement47
Figure 19	Notation used for 6 bolt (2/4) unstiffened end plate	-	Examples of web panel shear conditions50
Figure 20	Notation used for 8 bolt (2/6)	Figure 45	Column flange doubler plate details at beam tension flange51
Figure 21	unstiffened end plate	Figure 46	Column web doubler plate details at beam tension flange53
F: 00	locations on column	Figure 47	Column web doubler plate details
rigure 22	Column and beam dimensions used in design model		at beam compression flange53
Figure 23	Stiff bearing dimension b_{sc} used	Figure 48	Web doubler plate—Welds to column flange53
J	in design model	Figure 40	Case I arrangement55
		i iguie 49	Jaso i arrangomont

	Page		Page
-	Case II and case III arrangement . 55 Column web doubler plate details	Figure 60	Diagonal shear stiffener arrangements68
J	at beam compression flange 56 Column web doubler plate details at beam compression flange 58	Figure 61	Transverse stiffener options when beam flanges are offset due to unequal beam depths69
Figure 53	Column web doubler plate details for shear59	Figure 62	Bolted end plate to column example71
_	Tension stiffener arrangement 62	Figure 63	Stress distribution in beam due to $M^* = 210 \text{ kNm}72$
igure 55	Yield line pattern 4 bolt (2/2) end plate to stiffened column flange 63	Figure 64	Alternative solution no. 1—
Figure 56	Yield line pattern 2/4 (6) bolt unstiffened end plate to stiffened column flange 63		Replacement flange plate inserted into column at beam tension flange plus web doubler plate77
Figure 57	Yield line pattern 2/6 (8) bolt unstiffened end plate to stiffened column flange 64	Figure 65	Alternative solution no. 2—Flange doubler plates at beam tension flange plus web doubler plate77
Figure 58	Yield line pattern 4/4 (8) bolt stiffened end plate to stiffened column flange	Figure 66	Alternative solution no. 3—Flange doubler plates and transverse stiffeners at beam tension flange78
Figure 59	Compression stiffener details 65	Figure 67	End plate behaviour idealisation90

LIST OF TABLES

	Page		Page
Table 1 Table 2 Table 3	Range of tested parameters 14 Equations to be applied for different configurations and connection elements	Table 11	Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam
Table 4	parameters	Table 12	sections > 300 mm deep85 Design moment capacity of
Table 5	Strength of flat bars to AS 3679.1—Grade 300		connection ϕM_{conn} —Four bolt stiffened end plate—M20 bolts
Table 6 Table 7	Stiffener material strengths		8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 200 mm deep86
	unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam sections > 300 mm deep	Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Unhaunched	
Table 8	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate—M20 bolts 8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 200 mm deep	Table 14	connection ϕM_{conn} —Six bolt unstiffened end plate—M20 bolts 8.8/TB category threads included in shear plane—Unhaunched
Table 9	Design moment capacity of connection $\phi M_{\rm conn}$ —Four bolt unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 300 mm deep	Table 15	universal beam sections > 350 mm deep
Table 10	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate—M20 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 200 mm deep		welded beam and universal beam sections > 520 mm deep89

