4 DETAILING CONSIDERATIONS

DETAILING CONSIDERATIONS—CONNECTION

- 1 The economics and practicality of field welding should be reviewed with the fabricator before it is specified. Any field welding should be arranged for welding in the flat or horizontal position. Good working access and welding screens are required.
- 2 Flange weld preparations will require a backing strip which requires local coping of the beam web. The backing strip is usually left in place, although the structural engineer may require it to be removed for design situations involving fatigue or seismic considerations.
- 3 Preference should be given to the use of fillet welds rather than butt welds, at least for fillet welds up to 8 mm leg length.
- 4 A full penetration butt weld may shrink up to 2–3 mm when it cools and contracts. Such shrinkage can cause erection problems when plumbing the columns. This is best controlled by fabricating the beam longer than required by the amount of the weld shrinkage or by increasing the weld root opening by that amount.
- 5 Lamellar tearing of the column flange may be of concern when there is a flange weld on one side and a stiffener weld on the other and both are shrinking and contracting. The correct welding procedure and sequencing should be employed (see Reference 16 for a discussion of lamellar tearing).
- 6 This connection requires extra care in both shop fabrication and field erection. Fabrication of this type of connection requires close control in cutting the beam to length and adequate consideration must be given to squaring the beam flanges such that the flanges at each end are parallel and the effect of any beam camber does not result in out-of-square beam flanges which make erection and field fit-up difficult.
- 7 Any shop welded connection has the benefit of all the welding being carried out in controlled fabrication shop conditions where the workpiece can be placed in jigs or manipulators for ease of welding. It does involve more connections due to the need for beam or column splices adjacent to the beam-column connection (Figures 2(a) and 3).
- 8 For the field welded connection, the web erection cleat may be used as a backing plate for a full penetration butt weld to the web.

8

DESIGN GUIDE 11

Welded beam to column moment connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition-2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 11 Welded beam to column moment connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J. Design Guide 11: Welded beam to column moment connections

1st ed. Bibliography. ISBN 978 1 921476 12 9 (pbk.). ISBN 978 1 921476 13 6 (pdf.).

- 1. Steel, Structural—Standards Australia.
- 2. Steel, Structural—Specifications Australia.
- 3. Joints, (Engineering)—Design and construction.
- I. van der Kreek, N.
- II. Australian Steel Institute.
- III. Title

(Series: Structural steel connection series).

Also in this series:

Handbook 1: Design of structural steel connections

- Design Guide 1: Bolting in structural steel connections
- Design Guide 2: Welding in structural steel connections
- Design Guide 3: Web side plate connections
- Design Guide 4: Flexible end plate connections
- Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

- Design Guide 10: Bolted moment end plate beam splice connections
- Design Guide 12: Bolted end plate beam to column moment connections
- Design Guide 13: Splice connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

 \diamond

This publication originated as part of Design of structural connections First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

ii

CONTENTS

Page

List of figuresivList of tablesvPrefaceviAbout the authorviiAbout the contributing authorviiAcknowledgementsviii			v vi vii vii
1	CON0 1.1	CEPT OF DESIGN GUIDES Background	1 1
2	DESC	RIPTION OF CONNECTION	2
3	TYPIC	CAL DETAILING OF CONNECTION	5
4	DETA	ILING CONSIDERATIONS	8
5	AS 41	00 REQUIREMENTS	10
6	BASIS	S OF DESIGN MODEL	11
7	CALC	ULATION OF DESIGN ACTIONS	12
8		OMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	16
9	BEAN 9.1	capacity of flange welds to beam	19 19
	9.2	DESIGN CHECK NO. 2—Design capacity of web welds to beam	20
10		OMMENDED DESIGN MODEL— TFFENED COLUMN DESIGN CHECK NO. 3—Local bending of column flange at beam	22
	10.2	tension flange	22
	10.3	tension flange DESIGN CHECK NO. 5—Local yielding of column web at beam	23
	10.4	compression flange DESIGN CHECK NO. 6—	25
	10.5	Column web crippling at beam compression flange DESIGN CHECK NO. 7— Column web compression	26
	10.0	buckling	28
	10.6	DESIGN CHECK NO. 8— Column web panel in shear	29
11		DMMENDED DESIGN MODEL— JMNS WITH DOUBLER PLATES DESIGN CHECK NO. 9—Local bending of column flange with flange doubler plates at	30
		beam tension flange	30

		Page
11.2	DESIGN CHECK NO. 10—Local yielding at beam tension flange of column web with doubler plate(s)	f 31
11.3	• • • • •	31
11.4	doubler plate(s) DESIGN CHECK NO. 12— Crippling of column web with	32
11.5	doubler plate(s) at beam compression flange DESIGN CHECK NO. 13— Compression buckling of column	34
11.6	web with doubler plate(s) DESIGN CHECK NO. 14— Shear on column web panel	36
	with doubler plate(s)	38
COLI	OMMENDED DESIGN MODEL— JMNS WITH TRANSVERSE	40
	FENERS DESIGN CHECK NO. 15— Column with transverse	40
12.2	stiffeners at tension flange DESIGN CHECK NO. 16— Column with transverse	40
12.3	stiffeners at compression flange DESIGN CHECK NO. 17— Column with transverse	42
	diagonal shear stiffeners	44
13 ADDI	TIONAL CONSIDERATIONS	46
14 ECO	NOMICAL CONSIDERATIONS	47
	GN EXAMPLES Design example 1—Beam on	48
15.2	one side of column Design example 2—Beams on	48
10.2	both sides of column	54
16 REFE	RENCES	58
17 DESI 17.1	GN CAPACITY TABLES Configuration A—Full penetration	
17.2	butt welds to flanges and webs Configuration B—Fillet welds required to develop section	60
17.3	moment capacity Configuration C–Fillet welds to	62
17.3	flanges and web	64
APPEND A	DICES Limcon software	66

ASI Design Guide 9 В comment form 73

iii

LIST OF FIGURES

Page

Figure 1	Typical welded beam to column moment connection 2
Figure 2	Alternative arrangements for welded beam to column connections
Figure 3	Arrangement with shop welded beams and column splices
Figure 4	Possible configurations of the welded moment beam to column connection
Figure 5	Stub girder connection, fully shop welded beam stub, beam spliced on site
Figure 6	Field welded moment connection— including erection cleat
Figure 7	Column doubler plate types and column flange replacement alternative
Figure 8	Column stiffener types7
Figure 9	Stiffener detailing9
Figure 10	Design actions on beam at column 12
Figure 11	Calculation of flange forces due to bending moment and axial force— Beam at right angles to column 13
Figure 12	Calculation of forces on column elements where beam is inclined upwards at column
Figure 13	Alternative stress distributions in beam due to design bending moment
Figure 14	Column and beam dimensions used in design model
Figure 15	Stiff bearing dimension <i>b</i> _{sc} used in design model
Figure 16	Summary of DESIGN CHECK locations on column
Figure 17	Flange weld design actions 19
Figure 18	Web weld design actions 21
Figure 19	Application of <i>c</i> _t term—Local bending at tension flange
Figure 20	Application of c_t term—Column web yielding at beam tension flange 23
Figure 21	Angle of dispersion used in DESIGN CHECK NO. 4 and NO. 5 24

	Page
Figure 22	2 Dispersion arrangement used in DESIGN CHECK NO. 724
Figure 23	Application of <i>c</i> t term—Column web yielding at beam compression flange25
Figure 24	Case I arrangement26
Figure 25	Case II and Case III arrangement27
Figure 26	Examples of web panel shear conditions29
Figure 27	7 Column flange doubler plate details at beam tension flange30
Figure 28	Column web doubler plate details at beam tension flange31
Figure 29	Column web doubler plate detail at beam compression flange.32
Figure 30) Web doubler plate—Welds to column flange33
Figure 31	Case I arrangement34
Figure 32	2 Case II and Case III arrangement34
Figure 33	Column web doubler plate details at beam compression flange35
Figure 34	Column web doubler plate details for compression buckling37
Figure 35	5 Column web doubler plate details for shear38
Figure 36	Tension stiffener arrangement40
Figure 37	Compression stiffener details42
Figure 38	B Diagonal shear stiffener arrangements45
-	Fransverse stiffener options when beam flanges are offset due to unequal beam depths46
Figure 40) Design example no. 1—Beam on one side of column48
Figure 41	Shear stiffener geometry52
Figure 42	2 Design example no. 1—Beam on one side of column—Alternative detailing to Figure 4053
Figure 43	B Design example no. 2—Beams on both sides of column54
Figure 44	Stress distribution in beam #2 due to 180 kNm55

iv

LIST OF TABLES

Page

Table 1	Equations to be applied for different configurations and connection elements
Table 2	Stiffener material design strengths 41
Table 3	Universal beams Grade 300— Design section moment and web capacities
Table 4	Welded beams Grade 300— Design section moment and web capacities
Table 5	Universal beams Grade 300— Weld configurations to achieve design section moment
	capacity <i>\phiM</i> _s 62

	Page
Table 6	Welded beams Grade 300— Weld configurations to achieve design section moment capacity ϕM_s 63
Table 7	Universal beams Grade 300— Design moment capacity of welded connection with 10 mm flange fillet welds and 8 mm web welds
Table 8	Universal beams Grade 300— Design moment capacity of welded connection with8 mm flange fillet welds and 6 mm web welds

v V