5.2.2.4 Design Shear Capacity of a Web

Designers must ensure that the design shear force $(V^*) \le \phi V_v$ along the beam. RHS and SHS generally have non-uniform shear stress distributions along their webs. Consequently, the design shear capacity of a web (ϕV_v) for most RHS/SHS in the Tables are primarily determined from Clauses 5.11.3 and 5.11.4 of AS 4100 and is calculated as the *lesser* of:

$$\phi V_{\text{V}} = \phi V_{\text{W}}$$
 (Clause 5.11.4 of AS 4100)

and

$$\phi V_{\rm V} = \frac{2\phi V_{\rm u}}{0.9 + \left(\frac{f_{\rm vm}^*}{f_{\rm va}^*}\right)}$$
 (Clause 5.11.3 of AS 4100)

Also, for CHS:
$$\phi V_V = 0.36 f_V A_e$$
 (Clause 5.11.4 of AS 4100)

where
$$\phi$$
 = 0.9 (Table 3.4 of AS 4100)
 $V_{\rm W}$ = 0.6 $f_{\rm V}$ (d – 2 t) 2 t

$$V_{\rm u} = V_{\rm w}$$
 for $\frac{d_1}{t}\sqrt{\left(\frac{f_{\rm y}}{250}\right)} \le 82$ and applies for most RHS/SHS in the Tables
$$= \alpha_{\rm v}V_{\rm w} \quad \text{for } \frac{d_1}{t}\sqrt{\left(\frac{f_{\rm y}}{250}\right)} > 82 \text{ for } 150 \text{x} 50 \text{x} 2.0 \text{RHS in Grades C} 350/C450$$

 f_{va}^{\star} = average design shear stress in the web

 f_{vm}^* = maximum design shear stress in the web

 f_y = yield stress used in design

 $A_{\rm e}$ = effective section area

= A_g (ie gross cross section of CHS *provided* there are no holes larger than those required for fasteners, or that the net area is greater than 0.9 times the gross area)

d = full depth of section

t = thickness of section

 $d_1 = d - 2t$

The ratio of maximum to average design shear stress in the web (f_{vm}^* / f_{va}^*) for bending about the x-axis is calculated [5.3] using:

$$\frac{f_{\text{VM}}^{*}}{f_{\text{Va}}^{*}} = \frac{3 (2b + d)}{2 (3b + d)}$$

where d = full depth of section

b = full width of section

Note: For bending about the y-axis, b and d are interchanged in the calculation of the maximum to average design web shear stress ratio. Non-uniform shear stress governs when d/b > 0.75.

For calculating the web area, the web depth has been taken as d - 2t (or b - 2t when appropriate) for RHS/SHS and 0.6 times the gross cross-section area (0.6 A_0) for CHS.

5.2.2.5 Design Web Bearing Capacities

Designers must ensure that the design bearing force $(R^*) \le \phi R_b$ at all locations along a beam where bearing forces are present.

The design bearing capacity (ϕR_b) is calculated in accordance with Clause 5.13 of AS 4100 and taken as the lesser of:

$$\phi R_{bv} = \phi 2\alpha_{p}b_{b}tf_{v}$$

and
$$\phi R_{bb} = \phi 2\alpha_c b_b t f_v$$

where
$$\phi$$
 = 0.9 (Table 3.4 of AS 4100)

$$\phi R_{\rm by}$$
 = design web bearing yield capacity (Clause 5.13.3 of AS 4100)

$$\phi R_{\rm bb}$$
 = design web bearing buckling capacity (Clause 5.13.4 of AS 4100)

$$f_{V}$$
 = yield stress used in design

(a) For interior bearing such that $b_d \ge 1.5 d_5$ (see Figure 5.2(b))

$$b_b = b_s + 5r_{\text{ext}} + d_5$$

$$b_s$$
 = actual length of bearing (see Figure 5.2(b))

$$d_5$$
 = flat width of web (see Figure 5.2(a))

$$r_{\text{ext}}$$
 = outside corner radius (see Section 3.2.1.2)

$$\alpha_{p} = \frac{0.5}{k_{s}} \left[1 + \left(1 - \alpha_{pm}^{2} \right) \left(1 + \frac{k_{s}}{k_{v}} - \left(1 - \alpha_{pm}^{2} \right) \frac{0.25}{k_{v}^{2}} \right) \right]$$

$$\alpha_{pm} = \frac{1}{k_s} + \frac{0.5}{k_v}$$

$$k_s = \frac{2r_{\text{ext}}}{t} - 1$$

$$k_{\rm V} = \frac{d_5}{t}$$

 $\alpha_{\rm C}$ = member slenderness reduction factor determined from Clause 5.13.4 of AS 4100. This is equal to the design axial compression capacity of a member with area $t_{\rm W}b_{\rm b}$ with $\alpha_{\rm b}=0.5$, $k_{\rm f}=1.0$ and modified slenderness ratio, $L_{\rm e}/r=3.5d_{\rm 5}/t$.

(b) For **end bearing** such that $b_d < 1.5d_5$ (see Figure 5.2(c))

$$b_b = b_s + 2.5r_{\text{ext}} + \frac{d_5}{2}$$

$$\alpha_{\mathsf{D}} = \sqrt{2 + k_{\mathsf{S}}^2} - k_{\mathsf{S}}$$

 $\alpha_{\rm C}$ = member slenderness reduction factor determined from Clause 5.13.4 of AS 4100. This is equal to the design axial compression capacity of a member with area $t_{\rm W}b_{\rm D}$ with $\alpha_{\rm D}=0.5$, $k_{\rm f}=1.0$ and modified slenderness ratio, $L_{\rm e}/r=3.8d_{\rm 5}/t$.

Tables 5.2-1 to 5.2-4 list values $\phi R_{\rm by}$ and $\phi R_{\rm bb}$ in terms of $\phi R_{\rm by}/b_{\rm b}$ and $\phi R_{\rm bb}/b_{\rm b}$ respectively for RSH/SHS. In both the interior and end bearing cases, the critical web bearing failure mode (i.e. web bearing yield design capacity or web bearing buckling design capacity) is shown in **bold**. Additionally, the terms $5r_{\rm ext}$ (=2 x 2.5 $r_{\rm ext}$ for interior bearing), 2.5 $r_{\rm ext}$ (for end bearing), $b_{\rm bw}$ (see Figures 5.2 (b) and (c)) and $L_{\rm e}/r$ are also listed in these tables. For the same section range, the RHS listings in this table series consider shear and bearing forces for flexure about the x-axis (the (A) series tables) which is then immediately followed by the (B) series table for flexure about the y-axis.

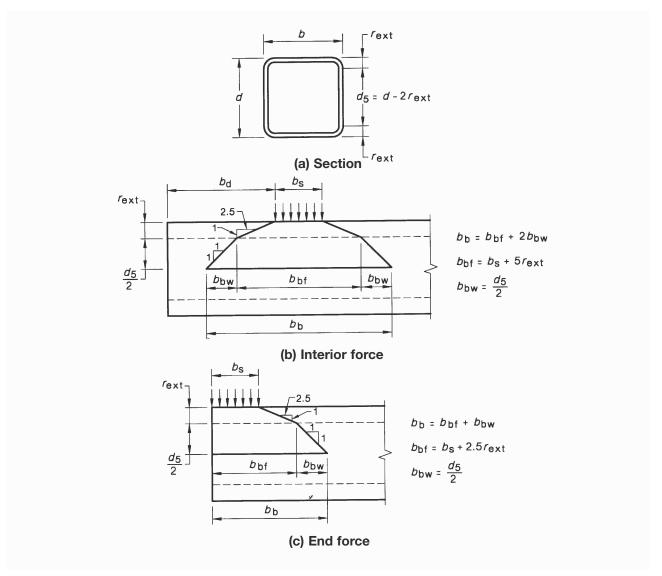


Figure 5.2: Dispersion of force through flange, radius and web of RHS/SHS

5.2.3 Example - Web Bearing

For an interior bearing location, a 150x100x4.0RHS – Grade C450 section has a design concentrated force of 150 kN bearing over the full width of the RHS for a length of 100 mm along the RHS (see Figure 5.3). Check the bearing capacity of the beam.

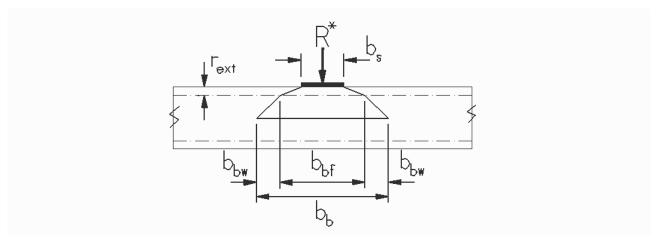
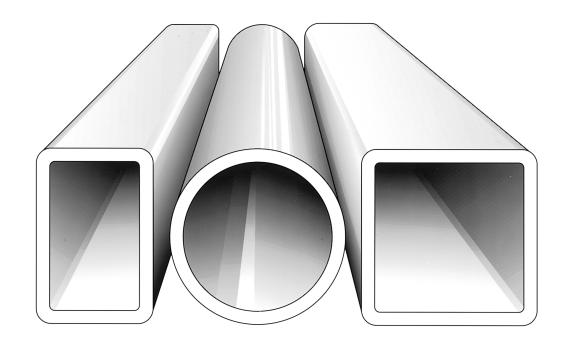



Figure 5.3: Web bearing design example

(ABN) / ACN (94) 000 973 839

design capacity tables for structural steel

Volume 2: Hollow Sections

second edition

CHS - Grade C250/C350 (to AS 1163)

RHS - Grade C350/C450 (to AS 1163)

SHS - Grade C350/C450 (to AS 1163)

LINIT STATE OF PURE AS A STATE O

design capacity tables for structural steel

Volume 2: Hollow Sections

second edition

TABLE OF CONTENTS

- Foreword (iv)
- Acknowledgements (iv)
 - Preface (v)
 - Notation (vi)

PART ONE

Introduction 1-1

PART TWO

Materials 2-1

PART THREE

Section Properties 3-1

PART FOUR

Methods of Structural Analysis 4-1

PART FIVE

Members Subject to Bending 5-1

PART SIX

Members Subject to Axial Compression 6-1

PART SEVEN

Members subject to Axial Tension 7-1

PART EIGHT

Members subject to Combined Actions 8-1

PART NINE

Connections 9-1

MEMBERS SUBJECT TO BENDING

PART 5

MEMBERS SUBJECT TO BENDING

		PAGE
5.1	Maximum Design Loads for Beams with Full Lateral Restraint.	5-3
5.1.1	Strength Limit State Design	5-3
5.1.1.1	W _{L1} based on Design Moment Capacity	
5.1.1.2	W_{L2}^{\star} based on Design Shear Capacity	5-4
5.1.2	Serviceability Limit State Design	5-4
5.1.2.1	$W_{\rm S}^{\star}$ based on a Deflection Limit of $L/250$	5-4
5.1.2.2	W_{YL}^* based on First Yield Load	5-5
5.1.3	Full Lateral Restraint	5-5
5.1.4	Additional Design Checks	5-5
5.1.5	Other Load Conditions	5-5
5.1.6	Examples	5-7
5.2	Design Section Moment and Web Capacities	5-9
5.2.1	General	5-9
5.2.2	Method	5-9
5.2.2.1	Design Section Moment Capacity	5-9
5.2.2.2	Segment Length for Full Lateral Restraint (FLR)	5-9
5.2.2.3	Design Torsional Moment Section Capacity	5-10
5.2.2.4	Design Shear Capacity of a Web	5-11
5.2.2.5	Design Web Bearing Capacities	5-11
5.2.3	Example - Web Bearing	5-13
5.2.4	Shear and Bending Interaction	5-15
5.2.4.1	Method	5-15
5.2.4.2	Example	5-15
5.2.5	Bending and Bearing Interaction	5-15
5.2.5.1	Method	5-15
5.2.5.2	Example	5-16
5.3	Design Moment Capacities for Members Without Full	
	Lateral Restraint	
5.3.1	General	
5.3.2	Design Member Moment Capacity	
5.3.3	Beam Effective Length	5-17
5.3.4	Other Loading and Restraint Conditions	5-17
5.3.5	Segment Length for Full Lateral Restraint	5-18
5.3.6	Examples	5-18

5.4	Calculation of Beam Deflections	5-20
5.5	References	5-20
	TABLES	
TABLES 5.1-1 to	5.1-6	
	Maximum Design Loads for Beams with Full Lateral Restraint	5-22
TABLES 5.2-1 to	5.2-4	
	Design Section Moment and Web Capacities (RHS & SHS only)	5-56
TABLES 5.3-1 to	5.3-2	
	Design Moment Capacities for Members without Full Lateral Restraint (RHS only)	5-74

NOTE: SEE SECTION 2.1 FOR THE SPECIFIC MATERAL STANDARD (AS 1163) REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES