CHAPTER 7 COMPRESSION MEMBERS

7.1 General

The design of cold-formed members in compression is generally more complex than conventional hot-rolled steel members. This is a result of the additional modes of buckling deformation which commonly occur in thin-walled structural members. These are:

- (a) local buckling and post-local buckling of stiffened and unstiffened compression elements, as described in Chapter 4,
- (b) flexural, torsional and flexural-torsional modes of buckling of the whole compression member as shown in Fig. 1.17(b), and
- (c) distortional buckling as shown in Fig. 1.18(a).

The design for (a) determines the nominal section compression capacity (N_s) described in Section 7.3 of this book. The design for (b) and (c) gives the nominal member compression capacity (N_c) given in Section 7.4 of this book. As specified in Table 1.6 of AS/NZS 4600, the capacity reduction factor (\emptyset_c) for computing the design section or member capacity from N_s or N_c is 0.85.

The elastic buckling stress for flexural, torsional and flexural-torsional buckling of members in compression is discussed in Section 7.2.1 of this book. The elastic distortional buckling stress of members in compression was discussed in Section 5.3.1.1 of this book.

Section 3.4 of AS/NZS 4600 includes rules which enable the designer to account for these additional buckling modes as well as the normal failure modes of flexural buckling and yielding commonly considered for doubly-symmetric hot-rolled compression members.

7.2 Elastic Member Buckling

7.2.1 Flexural, Torsional and Flexural-Torsional Buckling

The elastic critical load for flexural, torsional and flexural-torsional buckling of a thin-walled member of general cross-section, as shown in Fig. 7.1(a), was derived by Timoshenko and is explained in detail in Timoshenko and Gere (Ref. 3.6) and also by Trahair in Ref. 5.2. For a member subjected to uniform compression and restrained at its ends by simple supports which prevent lateral displacement of the section perpendicular to its longitudinal axis, as well as twisting rotation, the elastic critical load (N_{oc}) is given by solution of the following three simultaneous equations in the displacement amplitudes A_1 , A_2 in the *x*-, *y*-directions respectively and twist angle A_3 as follows:

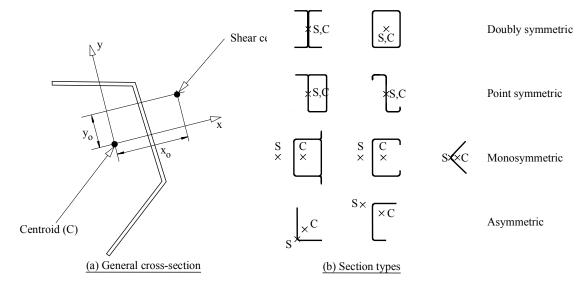


Fig. 7.1 Thin-walled sections

$$(N_{oy} - N_{oc})A_{1} - N_{oc} y_{o} A_{3} = 0$$
(7.1)

$$(N_{ox} - N_{oc})A_2 + N_{oc} x_o A_3 = 0$$
(7.2)

$$-N_{oc} y_{o} A_{1} + N_{oc} x_{o} A_{2} + (r_{o1})^{2} (N_{oz} - N_{oc}) A_{3} = 0$$
(7.3)

.....

where

$$N_{\rm ox} = \pi^2 \, \frac{E I_x}{l^2} \tag{7.4}$$

$$N_{oy} = \pi^2 \frac{EI_y}{l^2}$$
 (7.5)

$$N_{oz} = \frac{GJ}{r_{o1}^2} \left(I + \frac{\pi^2 E I_w}{G J l^2} \right)$$
(7.6)

$$r_{o1}^{2} = \frac{\left(I_{x} + I_{y}\right)}{A} + x_{o}^{2} + y_{o}^{2}$$
(7.7)

The terms x_o and y_o are the shear centre coordinates shown in Fig. 7.1(a). The modes of buckling for flexure about both principal axes, and twist angle are sinusoidal with amplitudes of A_1 , A_2 and A_3 respectively.

Two solutions to Eqs (7.1) - (7.3) exist. Either the column does not buckle and $A_1 = A_2 = A_3 = 0$, or the column buckles and the determinant of the matrix of coefficients of A_1 , A_2 and A_3 in Eqs (7.1) - (7.3) is zero. In this case, the resulting cubic equation to be solved for the critical load (N_{oc}) is:

$$N_{oc}^{3} \left(r_{o1}^{2} - x_{o}^{2} - y_{o}^{2} \right) - N_{oc}^{2} \left[\left(N_{ox} + N_{oy} + N_{oz} \right) r_{o1}^{2} - \left(N_{oy} x_{o}^{2} + N_{ox} y_{o}^{2} \right) \right] + N_{oc} r_{o1}^{2} \left(N_{ox} N_{oy} + N_{oy} N_{oz} + N_{oz} N_{ox} \right) - N_{ox} N_{oy} N_{oz} r_{o1}^{2} = 0$$
(7.8)

For general asymmetric sections of the type shown in Fig. 7.1(b), the solution of Eq. (7.8) in its general form is necessary. Eq. (7.8) is given in Clause 3.4.5 of AS/NZS 4600 such that it has been divided by the gross sectional area cubed to convert it to a buckling stress (f_{oc}).

For monosymmetric sections of the type shown in Fig. 7.1(b), for which either x_o or y_o are zero, then simpler solutions exist. In the case of the *x*-axis as the axis of symmetry, then y_o is zero and hence:

$$(N_{oc})_1 = N_{oy} \tag{7.9}$$

$$(N_{oc})_{2,3} = \frac{\left(N_{ox} + N_{oz}\right) \pm \sqrt{\left(N_{ox} - N_{oz}\right)^{2} + 4N_{ox}N_{oz}\left(\frac{x_{o}}{r_{ol}}\right)^{2}}}{2\left[I - \left(\frac{x_{o}}{r_{ol}}\right)^{2}\right]}$$
(7.10)

Eq. (7.9) gives the flexural buckling load about the *y*-axis and the smaller of the two values computed using Eq. (7.10) gives the flexural-torsional buckling load. Eqs (7.9) and (7.10), converted to buckling stresses (f_{oc}) by dividing by the gross area (A) form the basis of Clause 3.4.3 of AS/NZS 4600.

Eq. (7.9) for the unlipped channel section in Fig. 3.2 produces identical results with the curve through C in Fig. 3.3 for column lengths greater than 1000 mm where local buckling effects have no influence. Similarly evaluation of Eq. (7.10) for the channel section in Fig. 3.2 produces identical results with the curve through D in Fig. 3.3 for column lengths greater than 1000 mm.

In Figs 3.6, 3.7 and 3.9, the curves shown as the dashed line labelled "Timoshenko flexural-torsional buckling formula" were calculated using the lower root of Eq. (7.10).

For doubly symmetric or point symmetric sections where x_o and y_o are both zero, then the three solutions of Eq. (7.8) are simply

$$(N_{oc})_1 = N_{ox}$$
 (7.11)

$$(N_{oc})_2 = N_{oy} \tag{7.12}$$

$$(N_{oc})_3 = N_{oz}$$
 (7.13)

For doubly-symmetric sections, closed cross-sections and any other sections that can be shown not to be subject to torsional or flexural-torsional buckling, Clause 3.4.2 of AS/NZS 4600 uses the lesser N_{oc} derived from Eqs (7.11) and (7.12) divided by the gross area (*A*) to give the flexural buckling stress (f_{oc}) (Eq. 3.4.2(1) of AS/NZS 4600). For point symmetric sections, where torsional buckling can also occur, Clause 3.4.4 of AS/NZS 4600 uses N_{oc} derived from Eq. 7.13 divided by the gross area (*A*) to give the torsional buckling stress (f_{oz}). The lesser of f_{oc} from Clause 3.4.2 and f_{oz} from Clause 3.4.4 must be used for the design of point symmetric sections.

In Eqs (7.4) - (7.6), the length (*I*) is the unbraced length between the simply supported ends of the column. However the length (*I*) in Eqs (7.4), (7.5) and (7.6) has been replaced by I_{ex} , I_{ey} and I_{ez} respectively in Clause 3.3.3.2.1 of AS/NZS 4600. The lengths I_{ex} , I_{ey} and I_{ez} are the effective lengths about the *x*-, *y*- and *z*-axes respectively as defined in Clause 3.3.3.2.1. The use of different lengths in the computation of the flexural-torsional buckling load by Eqs (7.8) or (7.10) is not theoretically justifiable. However it usually produces a conservative estimate of the flexural-torsional buckling load of columns which have different flexural and torsional effective lengths. This procedure has been justified experimentally for the uprights of steel storage rack columns as described in Ref. 7.1.

In Section 5 of the Australian Steel Storage Racking Standard (Ref. 1.21), effective length factors are specified for flexural buckling in the direction perpendicular to the upright frame (typically $I_{ez} / I = 1.7$ for racking not braced against side sway), for flexural buckling in the plane of the upright frame (typically $I_{ey} / I = 1.0$) and for torsional buckling (typically $I_{ez} / I = 0.8$) provided twisting of the upright is prevented at the brace points.

For the design of studs in the walls of steel framed housing, effective lengths have been suggested in Section 5.3.2.1(ii) of Ref. 7.2. The torsional effective length (I_{ez}) is recommended as 0.8 times the noggin space where bracing is provided at the noggin and the ends according to Clause 4.4(a) of AS/NZS 4600. The effective length for flexure (I_{ex}) is recommended as 0.65 times the height of the stud for flat-ended wall studs restrained from flexure normal to the wall at both ends.

7.2.2 Distortional Buckling

The calculation of the elastic distortional buckling stress (f_{od}) for flange distortional buckling was discussed in detail in Section 5.3.1.1 of this book as an introduction to flange distortional buckling in flexure described in Section 5.3.1.2. Detailed formulations for computing the elastic distortional buckling stress (f_{od}) are given for a general channel in compression in Appendix D1 of AS/NZS 4600, and for a simple lipped channel in compression in Appendix D2 of AS/NZS 4600.

7.3 Section Capacity in Compression

The strength of short length columns compressed between rigid end platens is governed mainly by the yield strength of the material and the slenderness of the plate elements forming the cross-section. For sections with stocky plate elements, the strength is simply equal to the

Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney

fourth edition - 2007

CONTENTS

	F	Page
PREFACE 1	TO THE 4 th EDITION	viii
CHAPTER 1	INTRODUCTION	1
1.1 De 1.1.1 1.1.2	esign Standards and Specifications for Cold-Formed Steel General	1 1
1.1.2	Specifications	1 2
1.2 Co	ommon Section Profiles and Applications of Cold-Formed Steel	4
1.3 Ma	anufacturing Processes	10
1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7	Distortional Buckling Cold Work of Forming Web Crippling under Bearing Connections Corrosion Protection Inelastic Reserve Capacity	12 12 13 14 15 15 16 16
1.5 Lo	ading Combinations	17
1.6 Lir	nit States Design	17
1.7 Co	omputer Analysis	19
1.8 Re	eferences	20
CHAPTER 2	2 MATERIALS AND COLD WORK OF FORMING	22
2.1 St	eel Standards	22
2.2 Ty	pical Stress-Strain Curves	23
2.3 Du	actility	25
2.4 Ef	fects of Cold Work on Structural Steels	29
2.5 Co	orner Properties of Cold-Formed Sections	30
2.6.1 E 2.6.2 M 2.6.3 E	acture Toughness Background Measurement of Critical Stress Intensity Factors Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens	32 32 32 34 35
2.7 Re	eferences	36
CHAPTER 3	BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING	37
3.1 Int	roduction to the Finite Strip Method	37
3.2 Mo 3.2.1 3.2.2 3.2.3	onosymmetric Column Study Unlipped Channel Lipped Channel Lipped Channel (Fixed Ended)	38 38 41 44
3.3.1	Irlin Section Study Channel Section Z-Section	45 45 46

	3.4 3.4.7 3.4.2		47 47 48
	3.5	References	49
CI	HAPTE	R 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS	50
	4.1	Local Buckling	50
	4.2	Postbuckling of Plate Elements in Compression	51
	4.3	Effective Width Formulae for Imperfect Elements in Pure Compression	52
	4.4 4.4.7 4.4.2		56 56 56
	4.5 4.5.2 4.5.2 4.5.3	2 Intermediate Stiffened Elements with One Intermediate Stiffener	57 57 58 58 58
	4.6 4.6.7 4.6.2 4.6.3	2 Hat Section in Bending with Intermediate Stiffener in Compression Flange	59 59 63 68
	4.7	References	75
CI	HAPTE	R 5 BEAMS, PURLINS AND BRACING	76
	5.1	General	76
	5.2 5.2.7 5.2.2 5.2.3	2 Continuous Beams and Braced Simply Supported Beams	77 77 81 85
	5.3 5.3.7 5.3.2	5 5	86 86 89
	5.4 5.4.1 5.4.2 5.4.3	2 Stability Considerations	89 89 92 94
	5.5 5.5.7 5.5.2 5.5.3	2 Lateral Restraint but No Torsional Restraint	95 95 95 96
	5.6	Bracing	98
	5.7 5.7.2 5.7.2	1 Sections with Flat Elements 1	01 01 02
	5.8 5.8.7 5.8.7 5.8.7 5.8.4	1Simply Supported C-Section Purlin12Distortional Buckling Stress for C-Section13Continuous Lapped Z-Section Purlin14Z-Section Purlin in Bending1	02 02 07 08 16
	5.5		~~

CHAPTE	R 6 WEBS	125
6.1	General	125
6.2	Webs in Shear	125
6.2. 6.2.	0	125 127
6.3	Webs in Bending	127
6.4	Webs in Combined Bending and Shear	129
6.5	Web Stiffeners	130
6.6	Web Crippling (Bearing) of Open Sections	130
6.6. 6.6.	1 Edge Loading Alone	130 133
6.7	Webs with Holes	134
6.8	Examples	136
6.8.	1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section	Purlin 136
6.8.	2 Combined Bearing and Bending of Hat Section	138
6.9	References	139
CHAPTE	R 7 COMPRESSION MEMBERS	141
7.1	General	141
7.2	Elastic Member Buckling	141
7.2. 7.2.	, 3	141 143
7.3	Section Capacity in Compression	143
7.4	Member Capacity in Compression	144
7.4. 7.4.:		144 146
7.5	Effect of Local Buckling	147
7.5.	1 Monosymmetric Sections	147
7.5.		149
7.6 7.6.	Examples 1 Square Hollow Section Column	151 151
7.6.2	2 Unlipped Channel Column	153
7.6.3	3 Lipped Channel Column	157
7.7	References	164
CHAPTE	R 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING	165
8.1	Combined Axial Compressive Load and Bending - General	165
8.2	Interaction Equations for Combined Axial Compressive Load and Bending	166
8.3 8.3. 8.3.		167 167 169
8.4	Combined Axial Tensile Load and Bending	170
8.5	Examples	171
8.5. 8.5		171 174
8.5. 8.5.		174 176
8.6	References	180

v V

CHAPTER 9 CONNECTIONS	182
9.1 Introduction to Welded Connections	182
 9.2 Fusion Welds 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading 9.2.3 Fillet Welds subject to Longitudinal Loading 9.2.4 Combined Longitudinal and Transverse Fillet Welds 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds 	184 184 185 186 186 187 190
9.3 Resistance Welds	190
9.4 Introduction to Bolted Connections	190
 9.5 Design Formulae and Failure Modes for Bolted Connections 9.5.1 Tearout Failure of Sheet (Type I) 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) 9.5.4 Shear Failure of Bolt (Type IV) 	192 193 193 194 196
9.6 Screw Fasteners and Blind Rivets	196
9.7 Rupture	200
9.8 Examples 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example	201 201 205
9.9 References	208
CHAPTER 10 DIRECT STRENGTH METHOD	209
10.1 Introduction	209
10.2 Elastic Buckling Solutions	209
 10.3 Strength Design Curves 10.3.1 Local Buckling 10.3.2 Flange-distortional buckling 10.3.3 Overall buckling 	210 210 212 213
10.4 Direct Strength Equations	213
10.5 Examples 10.5.1 Lipped Channel Column (Direct Strength Method) 10.5.2 Simply Supported C-Section Beam	215 215 216
10.6 References	218
CHAPTER 11 STEEL STORAGE RACKING	219
11.1 Introduction	219
11.2 Loads	220
 11.3 Methods of Structural Analysis 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order 11.3.3 Beams 	221 222 223 223
 11.4 Effects of Perforations (Slots) 11.4.1 Section Modulus of Net Section 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) 	224 224 225 225
11.5 Member Design Rules11.5.1 Flexural Design Curves11.5.2 Column Design Curves	225 225 226

vi

11.5.3 Distortional Buckling	227
11.6 Example	227
11.7 References	235
SUBJECT INDEX BY SECTION	

