MEMBERS SUBJECT TO BENDING

5.3.2 Design Member Moment Capacity

Designers must ensure that the design bending moment (M^*) $\leq \phi M_b$ for all beam segments. The tabulated values of design member moment capacity (ϕM_b) are determined in accordance with Clause 5.6.1.4 of AS 4100 as:

$$\phi M_{\rm b} = \phi \alpha_{\rm m} \alpha_{\rm s} M_{\rm s} \leq \phi M_{\rm s}$$

where $\phi = 0.9$ (Table 3.4 of AS 4100)

 $\alpha_{\rm m}$ = moment modification factor (Clause 5.6.1.1 of AS 4100)

= 1.0 (Assumed for all entries in Tables 5.3-1 to 5.3-2 – based on uniform moment case)

 α_s = slenderness reduction modification factor (Clause 5.6.1.1 of AS 4100)

= 0.6
$$\left\{ \sqrt{\left[\left(\frac{M_s}{M_{oa}} \right)^2 + 3 \right]} - \left(\frac{M_s}{M_{oa}} \right) \right\}$$
 (Equation 5.6.1.1(2) of AS 4100)

 $M_{\text{oa}} = M_{\text{o}}$ – the reference buckling moment (Clause 5.6.1.1(a)(iv)(A) of AS 4100)

$$= \sqrt{\frac{\pi^2 E I_y}{L_e^2} GJ}$$
 (equation 5.6.1.1(3) of AS 4100 with $I_w = 0$)

 $L_{\rm e}$ = effective length of beam segment.

5.3.3 Beam Effective Length

The value of $\phi M_{\rm b}$ depends on the effective length ($L_{\rm e}$) of the flexural member. $L_{\rm e}$ is determined by:

 $L_{\rm e} = k_{\rm t} \, k_{\rm l} \, k_{\rm r} \, L$ (Clause 5.6.3 of AS 4100) where $k_{\rm t} = {\rm twist} \, {\rm restraint} \, {\rm factor}$ (Table 5.6.3(1) of AS 4100) $k_{\rm l} = {\rm load} \, {\rm height} \, {\rm factor}$ (Table 5.6.3(2) of AS 4100) $k_{\rm r} = {\rm lateral} \, {\rm rotation} \, {\rm restraint} \, {\rm factor}$ (Table 5.6.3(3) of AS 4100) $L = {\rm length} \, {\rm of} \, {\rm segment}$

Ref. [5.4] provides guidance on the restraint conditions on flexural members provided by many common structural steelwork connections. Additionally, Ref. [5.5] considers further guidance on unbraced cantilevers.

5.3.4 Other Loading and Restraint Conditions

The design member moment capacities presented in the 5.3 series tables can be used for other loading conditions. For these situations the effective length ($L_{\rm e}$) corresponding to the actual length and restraint conditions must be assessed and the appropriate value of $\alpha_{\rm m}$ determined in accordance with Clause 5.6.1.1(a) of AS 4100. The design member moment capacity can then be determined as the *lesser* of:

$$\begin{array}{rcl} & \phi M_{\rm SX} &=& \phi Z_{\rm ex} \, f_{\rm y} \\ & \text{and} & \phi M_{\rm b} &=& \phi \alpha_{\rm m} \, \alpha_{\rm s} \, Z_{\rm ex} \, f_{\rm y} \\ & \text{where} & \phi &=& 0.9 \text{ (Table 3.4 of AS 4100)} \\ & \phi M_{\rm b} &=& \alpha_{\rm m} \text{ times the value of } \phi M_{\rm b} \, (= \phi \alpha_{\rm s} \, Z_{\rm ex} \, f_{\rm y}) \text{ given in Tables 5.3-1 to 5.3-2.} \end{array}$$

Tables 5.3-1 to 5.3-2 are based on the most critical moment distribution – i.e. uniform moment over the entire beam segment ($\alpha_{\rm m}$ = 1.0). For other values of $\alpha_{\rm m}$, designers should use the *lesser* of $\phi M_{\rm sx}$ and $\alpha_{\rm m}$ ($\phi M_{\rm b}$) where $\phi M_{\rm b}$ is the value given in the appropriate table for the same effective length.

(ABN) / ACN (94) 000 973 839

design capacity tables for structural steel

Volume 2: Hollow Sections

second edition

CHS - Grade C250/C350 (to AS 1163)

RHS - Grade C350/C450 (to AS 1163)

SHS - Grade C350/C450 (to AS 1163)

LINIT STATE OF PURE AS A STATE O

design capacity tables for structural steel

Volume 2: Hollow Sections

second edition

TABLE OF CONTENTS

- Foreword (iv)
- Acknowledgements (iv)
 - Preface (v)
 - Notation (vi)

PART ONE

Introduction 1-1

PART TWO

Materials 2-1

PART THREE

Section Properties 3-1

PART FOUR

Methods of Structural Analysis 4-1

PART FIVE

Members Subject to Bending 5-1

PART SIX

Members Subject to Axial Compression 6-1

PART SEVEN

Members subject to Axial Tension 7-1

PART EIGHT

Members subject to Combined Actions 8-1

PART NINE

Connections 9-1

MEMBERS SUBJECT TO BENDING

PART 5

MEMBERS SUBJECT TO BENDING

		PAGE
5.1	Maximum Design Loads for Beams with Full Lateral Restraint.	5-3
5.1.1	Strength Limit State Design	5-3
5.1.1.1	$W_{L^1}^{\star}$ based on Design Moment Capacity	5-3
5.1.1.2	W_{L2}^{\star} based on Design Shear Capacity	5-4
5.1.2	Serviceability Limit State Design	
5.1.2.1	W_{S}^{*} based on a Deflection Limit of $L/250$	5-4
5.1.2.2	W_{YL}^{\star} based on First Yield Load	5-5
5.1.3	Full Lateral Restraint	5-5
5.1.4	Additional Design Checks	5-5
5.1.5	Other Load Conditions	5-5
5.1.6	Examples	5-7
5.2	Design Section Moment and Web Capacities	5-9
5.2.1	General	5-9
5.2.2	Method	5-9
5.2.2.1	Design Section Moment Capacity	5-9
5.2.2.2	Segment Length for Full Lateral Restraint (FLR)	5-9
5.2.2.3	Design Torsional Moment Section Capacity	5-10
5.2.2.4	Design Shear Capacity of a Web	5-11
5.2.2.5	Design Web Bearing Capacities	5-11
5.2.3	Example - Web Bearing	5-13
5.2.4	Shear and Bending Interaction	5-15
5.2.4.1	Method	5-15
5.2.4.2	Example	5-15
5.2.5	Bending and Bearing Interaction	5-15
5.2.5.1	Method	5-15
5.2.5.2	Example	5-16
5.3	Design Moment Capacities for Members Without Full Lateral Restraint	5_16
5.3.1	General	
5.3.2	Design Member Moment Capacity	
5.3.3	Beam Effective Length	
5.3.4	Other Loading and Restraint Conditions	
5.3.5	Segment Length for Full Lateral Restraint	
5.3.6	Examples	5-18

5.4	Calculation of Beam Deflections	5-20
5.5	References	5-20
	TABLES	
TABLES 5.1-1 to	5.1-6	
	Maximum Design Loads for Beams with Full Lateral Restraint	5-22
TABLES 5.2-1 to	5.2-4	
	Design Section Moment and Web Capacities (RHS & SHS only)	5-56
TABLES 5.3-1 to	5.3-2	
	Design Moment Capacities for Members without Full Lateral Restraint (RHS only)	5-74

NOTE: SEE SECTION 2.1 FOR THE SPECIFIC MATERAL STANDARD (AS 1163) REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES