Design Guide 12 Bolted end plate to column moment connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 12 Bolted end plate to column moment connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 12: Bolted end plate to column moment connections

1st ed.

Bibliography.

ISBN 978 1 921476 14 3 (pbk.). ISBN 978 1 921476 15 0 (pdf.).

1. Steel, Structural—Standards-Australia.

- Steel, Structural—Specifications-Australia. 2.
- 3. Joints, (Engineering)—Design and construction.
- ١. van der Kreek, N.
- Australian Steel Institute. П.

(Series: Structural steel connection series).

Also in this series:

Handbook 1: Design of structural steel connections Design Guide 1: Bolting in structural steel connections Design Guide 2: Welding in structural steel connections Design Guide 3: Web side plate connections

Design Guide 4: Flexible end plate connections Design Guide 5: Angle cleat connections Design Guide 6: Seated connections

Design Guide 10: Bolted end plate beam splice connections Design Guide 11: Welded beam to column moment connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

design guide 12:

bolted end plate to column moment connections, first edition

This publication originated as part of Design of structural connections

First edition 1978

Third edition 1988

Fourth edition 1994

Second edition 1981

CONTENTS

		Pa	age			age
List of figures				10.5	DESIGN CHECK NO. 14—Column	40
List of tables			vi 	10.6	web compression buckling DESIGN CHECK NO. 15—Column	49
Preface			vii viii	10.0	web panel in shear	50
About the author About the contributing author				11 RECO	OMMENDED DESIGN MODEL—	
Acknowledgements					JMNS WITH DOUBLER PLATES	.51
1	CONC	CEPT OF DESIGN GUIDES	1	11.1	DESIGN CHECK NO. 16—Local	
	1.1	Background	1		bending of column flange with	
2	DESC	RIPTION OF CONNECTION	2		flange doubler plates at beam tension flange	51
3	TYPIC	CAL DETAILING OF CONNECTION	5	11.2	DESIGN CHECK NO. 17—Local	51
4	DETA	ILING CONSIDERATIONS	9		yielding of column web with double	r
		00 REQUIREMENTS		44.0	plate(s) at beam tension flange	52
		S OF DESIGN MODEL		11.3	DESIGN CHECK NO. 18—Local yielding of column web with double	r
					plate(s) at beam compression	ı
7		ULATION OF DESIGN ACTIONS	. 15		flange	54
8		DMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	21	11.4	DESIGN CHECK NO. 19—Crippling	
_					of column web with doubler plate(s)	
9	RECOMMENDED DESIGN MODEL 9.1 DESIGN CHECK NO. 1—Detailing		26	11.5	at beam compression flange DESIGN CHECK NO. 20—	55
	-	requirements	26	11.5	Compression buckling of column	
	9.2	DESIGN CHECK NO. 2—Design			web with doubler plate(s)	57
		capacity of flange welds to beam	28	11.6	DESIGN CHECK NO. 21—Column	
	9.3	DESIGN CHECK NO. 3—Design capacity of web welds to beam	29		web panel with doubler plate(s) in shear	59
	9.4	DESIGN CHECK NO. 4—Design	29	12 DEC	OMMENDED DESIGN MODEL—	39
	•	capacity of bolts at tension flange	31		JMNS WITH TRANSVERSE	
	9.5	DESIGN CHECK NO. 5—Design			FENERS	.61
	0.6	capacity of bolts in shear	33	12.1	DESIGN CHECK NO. 22—Column	
	9.6	DESIGN CHECK NO. 6—Design capacity of end plate at			with transverse stiffeners at tension	
		tension flange	34	12.2	flange DESIGN CHECK NO. 23—Column	61
	9.7	DESIGN CHECK NO. 7—Design		12.2	with transverse stiffeners at	
		capacity of end plate in shear	38		compression flange	65
	9.8	DESIGN CHECK NO. 8—Design requirements for stiffener to		12.3	DESIGN CHECK NO. 24—Column	
		end plate	39		with transverse diagonal shear	67
	9.9	DESIGN CHECK NO. 9—Design		40.4551	stiffeners	67
		apacity of stiffener welds to			TIONAL CONSIDERATIONS	
	'		40		NOMICAL CONSIDERATIONS	
10	RECOMMENDED DESIGN MODEL— UNSTIFFENED COLUMN		4.4		GN EXAMPLE	.71
	-	DESIGN CHECK NO. 10—Local	41	15.1	Design example—Four bolt unstiffened end plate to column	
	10.1	bending of column flange at beam			connection	71
		tension flange	41	16 REFE	RENCES	
	10.2	DESIGN CHECK NO. 11—Local			GN CAPACITY TABLES	
		yielding of column web at beam tension flange	11		Four bolt unstiffened end plate	81
		DESIGN CHECK NO. 12—Local	44	17.2	Four bolt stiffened end plate	85
		yielding of column web at beam			Six bolt unstiffened end plate	87
		compression flange	45	17.4	Eight bolt stiffened end plate	89
	10.4	DESIGN CHECK NO. 13—		APPEND		- -
		Column web crippling at beam compression flange	47	A	Thick and thin end plate behaviour Limcon software	90
		compression nange	TI	B C	ASI Design Guide 12	92
				Ū	comment form	97

LIST OF FIGURES

	Page		Page
Figure 1	Bolted end plate to column		Clearance dimensions a_f and s_{po} 27
Figure 2	moment connections	rigare 20	End plate stiffener detailing27
Figure 2	Forms of extended end plate connection	=	Flange weld design actions28
Figure 3	Possible configurations of the	Figure 21	Web weld design actions30
i iguie 3	bolted moment end plate beam to column connection 4	_	Yield line pattern 4 bolt (2/2) unstiffened end plate34
Figure 4A	Typical detailing for 4 bolt	Figure 29	Yield line pattern 4 bolt (2/2)
	unstiffened bolted end plate to	Figure 30	stiffened end plate35 Yield line pattern 6 bolt (2/4)
E: 4D	column connection	r igure 30	unstiffened end plate36
Figure 4B	Typical detailing for haunched rafter to column bolted end plate	Figure 31	Yield line pattern 8 bolt (2/6)
	connection 6	•	unstiffened end plate36
Figure 5	Removal of column flange with thicker plate inserted 6	Figure 32	Yield line pattern 8 bolt (4/4) stiffened end plate37
Figure 6	Column doubler plate types 7	E: 00	Yield line pattern 4 bolt (2/2)
Figure 7	Column transverse stiffener types 8		end plate to unstiffened column flange41
Figure 8	Shims used between end plate and column flange 9	Figure 34	Yield line pattern 2/4(6) bolt end plate to unstiffened
Figure 9	Stiffener detailing 10		column flange42
Figure 10	Clearance required for tensioning bolts 11	Figure 35	Yield line pattern 2/6(8) bolt
Figure 11	Design actions on beam at		end plate to unstiffened column flange42
	column	Figure 36	Yield line pattern 4/4(8) bolt
Figure 12	Calculation of flange forces due		end plate to unstiffened column
	to bending moment and axial force—horizontal beam 16	Figure 27	flange
Figure 13	Calculation of force components	Figure 37	Flange removed with new plate inserted43
	where beam is inclined to column	Figure 38	Application of c_t term—Column
	in upwards direction 17	3	web yielding at beam tension
Figure 14	Calculation of force components		flange44
	where beam is inclined to column in downwards direction	Figure 39	Application of c_t term—Column
Figure 15	Alternative stress distributions		web yielding at beam compression flange45
1 19410 10	in beam19	Figure 40	Angle of dispersion used in
Figure 16	Notation used for 4 bolt (2/2)	_	DESIGN CHECK NO. 1246
	unstiffened end plate	Figure 41	Dispersion arrangement used
Figure 17	Notation used for 4 bolt (2/2) stiffened end plate		in DESIGN CHECK NO. 1446
Figure 18	Notation used for 8 bolt (4/4)	1 19410 12	Case I arrangement47
rigule 10	stiffened end plate	=	Case II and case III arrangement47
Figure 19	Notation used for 6 bolt (2/4)	Figure 44	Examples of web panel shear conditions50
F: 00	unstiffened end plate	Figure 45	Column flange doubler plate
Figure 20	Notation used for 8 bolt (2/6) unstiffened end plate		details at beam tension flange51
Figure 21	Summary of design check	Figure 46	Column web doubler plate details at beam tension flange53
-	locations on column	Figure 47	Column web doubler plate details
Figure 22	Column and beam dimensions	•	at beam compression flange53
F:	used in design model	Figure 48	Web doubler plate—Welds
rigure 23	Stiff bearing dimension b_{sc} used in design model		to column flange53
	in addigit though	Figure 49	Case I arrangement55

	Page		Page
•	Case II and case III arrangement . 55 Column web doubler plate details	Figure 60	Diagonal shear stiffener arrangements68
_	at beam compression flange 56 Column web doubler plate details at beam compression flange 58	Figure 61	Transverse stiffener options when beam flanges are offset due to unequal beam depths69
Figure 53	Column web doubler plate details for shear	Figure 62	Bolted end plate to column example71
•	Tension stiffener arrangement 62	Figure 63	Stress distribution in beam due to $M^* = 210 \text{ kNm}72$
Figure 55	Yield line pattern 4 bolt (2/2) end plate to stiffened column flange 63	Figure 64	Alternative solution no. 1—
Figure 56	Yield line pattern 2/4 (6) bolt unstiffened end plate to stiffened column flange 63		Replacement flange plate inserted into column at beam tension flange plus web doubler plate77
Figure 57	Yield line pattern 2/6 (8) bolt unstiffened end plate to stiffened column flange 64	Figure 65	Alternative solution no. 2—Flange doubler plates at beam tension flange plus web doubler plate77
Figure 58	Yield line pattern 4/4 (8) bolt stiffened end plate to stiffened column flange	Figure 66	Alternative solution no. 3—Flange doubler plates and transverse stiffeners at beam tension flange78
Figure 59	Compression stiffener details 65	Figure 67	End plate behaviour idealisation90

LIST OF TABLES

	Page		Page
Table 1 Table 2	Range of tested parameters 14 Equations to be applied for different configurations and connection elements 20	Table 11	Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate—M24 bolts 8.8/TB category threads included
Table 3	Recommended limits on parameters	welded bea	in shear plane—Unhaunched welded beam/universal beam sections > 300 mm deep85
Table 4	Strength of plate to AS 3678— Grade 250	Table 12	Design moment capacity of connection ϕM_{conn} —Four bolt
Table 5	Strength of flat bars to AS 3679.1—Grade 300 39		stiffened end plate—M20 bolts 8.8/TB category threads included
Table 6 Table 7	Stiffener material strengths	in shear universal	in shear plane—Unhaunched universal beam sections > 200 mm deep86
	unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Unhaunched welded beam/universal beam sections > 300 mm deep	Table 13	Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Unhaunched
Table 8	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate—M20 bolts 8.8/TB category threads included in shear plane—Unhaunched universal beam sections > 200 mm deep	Table 14	welded beam/universal beam sections > 450 mm deep
Table 9	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate—M24 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 300 mm deep	Table 15	universal beam sections > 350 mm deep8
			Design moment capacity of connection ϕM_{conn} —Eight bolt stiffened end plate—M24 bolts 8.8/TB Category threads included in shear plane—Unhaunched
Table 10	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate—M20 bolts 8.8/TB category threads included in shear plane—Haunched universal beam sections > 200 mm deep 84		welded beam and universal beam sections > 520 mm deep89

PREFACE

This new series of connection publications by the Australian Steel Institute (ASI) covering capacity tables, theory and design of individual rigid connections will be known as the Structural Steel Connections Series, Part 2: 1st ed. 2009 ('Connection Series, Part 2'). This Connection Series, Part 2 details the method of design and provides capacity tables and detailing parameters for a range of rigid connections commonly used for structural steel in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabrication and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. This Connections Series, Part 2 in conjunction with the Connection Series, Part 1 for simple connections (collectively the Structural Steel Connections Series or 'Connection Series') replaces and enhances an ASI flagship publication first released in 1978 at which time connection design theories were developed for the purpose of generating and releasing connection capacity tables. The first three editions were released in permissible stress format. The fourth edition Design of Structural Connections (often referred to as the Green Book) was released in 1994 in limit state format but there was no subsequent release of a limit state companion document containing connection design capacity tables.

This Design Guide is intended to provide a recommended design model for the extended bolted moment end plate connection when used as a beam-to-column connection.

The recommended design model is based extensively on the American Institute of Steel Construction Steel Design Guide 4 'Extended end-plate moment connections, seismic and wind applications', Second Edition, and Design Guide 13 'Stiffening of wide flange columns at moment connections: wind and seismic applications' and Steel Design Guide 16 'Flush and extended multiple-row moment end-plate connections'.

The new Connections Series format with separate design guides for individual connection types is intended to facilitate addition to or revision of connection model theory using relevant new local or international research as deemed appropriate by the ASI. Connection models developed using the Handbook 1 theory follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection capacity assessment.

Engineering Systems has worked closely with the Australian Steel Institute to further develop Limcon as the companion program for this new Connection Design Guide Series. The latest version of Limcon fully implements the new connection design models and it was employed in checking the design tables. The Limcon output for the worked example is included in the appendix to this Design Guide. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the Design Guide capacity tables.

An appendix to each Design Guide also contains an ASI comment form. Users of this publication are encouraged to photocopy this one page form and forward any suggested improvements which may be incorporated into future editions.

design guide 12: bolted end plate to column moment connections, first edition

T.J. Hogan

N. van der Kreek

ABOUT THE AUTHOR

Tim Hogan is Consultant to and retired Director of SCP Consulting Pty Ltd. His academic achievements include a Bachelor of Engineering from the University of NSW with 1st Class Honours and the University Medal. Post graduate qualifications include a Master of Engineering Science and a Master of Business Administration. Tim is a Member of the Institution of Engineers Australia with CPEng and FIE Aust. status.

His early experience was on bridge design and construction with the NSW Public Works Department and subsequently as Development Engineer and then Engineering Manager with the Australian Institute of Steel Construction until 1980. Consulting experience with SCP Consulting since 1980 has included design and supervision of large steel framed buildings, industrial buildings, mill buildings, retail developments, defense infrastructure and composite steel-concrete buildings. His published works deal primarily with the areas of composite construction, steel connections, fabrication and erection of steel structures and he was a major contributor and editor of the Commentary to AS 4100. He is a member of a number of Standards Australia Committees dealing with steel and composite structures and is currently Chairman of Committee BD-001 Steel Structures and BD-032 Composite Construction. He received an award from Standards Australia for his contributions to writing of Australian Standards.

ABOUT THE CONTRIBUTING AUTHOR

Nick van der Kreek is OneSteel Manufacturing's Technical Development Manager and has held various technical and marketing roles during his 22 years with OneSteel (BHP Steel prior to 2000). Nick's activities included engineering development and design support associated with composite and steel framed building solutions—either of a generic nature or specific designs for many notable Australian multi-storey buildings. Nick is the principal author of the OneSteel composite software.

Nick has a BE from the University of Queensland and a Graduate Diploma in Computing from the University of Melbourne.

design guide 12: bolted end plate to column moment connections, first edition

ACKNOWLEDGEMENTS

This publication is an Australian Government funded initiative under the Industry Cooperative Innovation Program.

The author would like to extend special thanks to:

The ASI Connections steering committee consisting of Richard Collins (Engineering Systems), Nick van der Kreek and Anthony Ng (OneSteel Market Mills), Arun Syam (Australian Tube Mills) for their respective contributions with the development and review of the technical and editorial content of the revised ASI Connection Manual.

Significant contributions were made by:

- Richard Collins—Engineering Systems in the development and upgrade of the Limcon software code in parallel with the design theory and aiding in the editing and validation of the revised models.
- Biometrical Data Processing for technical typesetting expertise.
- Whizzcad Pty Ltd with drafting and graphics for publishing.
- ASI State Engineering & Construction special Sub-Committees for progressive engineering and industry review of manuscripts.

Together with support of:

 All facets of the ASI membership including design engineers, steelwork detailers and fabricators in contributing industry best practice and standards through ASI surveys and direct consultation to establish the theory and geometry in this new ASI Connection Manual.

