Design Guide 7

Pinned base plate connections for columns

by

T.J. Hogan

first edition—2011

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 7 Pinned base plate connections for columns

Copyright © 2011 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2011 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Hogan, T.J.

Design Guide 7: Pinned base plate connections

1st ed.

Includes bibliographic references. ISBN 978 1 9214762 4 2 (pbk.). Steel, Structural—Standards – Australia. Steel, Structural—Specifications – Australia. Joints (Engineering)—Design and construction. Australian Steel Institute. (Series: Structural steel connections series). This publication originated as part of Design of structural connections First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

Also in this series:

Design capacity tables for structural steel. Volume 3: Simple connections—Open sections Handbook 1: Design of structural steel connections

Design Guide 1: Bolting in structural steel connections

Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections

Design Guide 4: Flexible end plate connections

Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 10: Bolted moment end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate beam to column moment connections

Design Guide 13: Splice connections

Design capacity tables for structural steel. Volume 4: Rigid connections—Open sections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regard the services of a competent professional person or persons should be sought.

CONTENTS

Page

Lis Lis Pro Ab Ac	at of fig at of tal eface out the knowle	jures bles e author edgements	iv v vi vii vii
1	CON0 1.1	CEPT OF DESIGN GUIDES Background	1 1
2	DESC	RIPTION OF CONNECTION	2
3	TYPICAL DETAILING OF CONNECTION 4		
4	DETA 4.1 4.2 4.3	ILING CONSIDERATIONS Base plate dimensions for open sections Base plate detailing Anchor bolt detailing	6 6 8 11
5	CODE	E REQUIREMENTS	14
6	BASIS 6.1 6.2 6.3 6.4 6.5 6.6	S OF DESIGN MODEL Axial compression Horizontal shear Anchor bolts in shear Axial tension Anchor bolts in tension Anchor bolts subject to tension and shear simultaneously	15 15 17 19 21 24 26
7	CALC	ULATION OF DESIGN ACTIONS	27
8	RECC SUM	OMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	28
9	RECO AXIAI 9.1	DMMENDED DESIGN MODEL— _ COMPRESSON AND SHEAR DESIGN CHECK NO. 1—Design capacity for bearing on concrete	29
	92	Support	29
	9.3	capacity of steel base plate DESIGN CHECK NO. 3—Design capacity of weld at column base	32 34

		Pa	age	
	9.4	DESIGN CHECK NO. 4—Design capacity for horizontal shear		
		transfer by friction at base		
		plate/concrete interface	35	
	9.5	DESIGN CHECK NO. 5—Design		
		capacity for horizontal shear		
		transfer by bearing of embedded		
		steel column	36	
	9.6	DESIGN CHECK NO. 6—Design		
		transfer through shear key	20	
	07		38	
	9.7	capacity for horizontal shear		
		transfer through anchor holts	40	
			-0	
10	RECC	MMENDED DESIGN MODEL—		
	AXIAL	_ TENSION AND SHEAR	.43	
	10.1	DESIGN CHECK NO. 8—Design		
		capacity of steel base plate	43	
	10.2	DESIGN CHECK NO. 9—Design		
		capacity of weld at column base	51	
	10.3	DESIGN CHECK NO. 10—Design		
		capacity of anchor bolts in tension	52	
	10.4	DESIGN CHECK NO. 5	56	
	10.5	DESIGN CHECK NO. 6	56	
	10.6	DESIGN CHECK NO. 7	56	
	10.7	DESIGN CHECK NO. 11—Design		
		capacity for horizontal shear and		
		tension applied to anchor bolts	57	
11	DESI	GN EXAMPLES	.58	
	11.1	Axial compression and shear—		
		Design Example No. 1	58	
	11.2	Axial compression or axial tension		
		and shear—Design Example No. 2	62	
12	REFE	RENCES	.67	
AP	PEND		~~	
	A	LINCON SOTTWARE	69	
	D	ASI Design Guide 13	76	
		comment form	10	

LIST OF FIGURES

Page

Figure 1	Typical pinned column base plates 2
Figure 2	Typical detailing of pinned column base plates for open sections 4
Figure 3	Typical detailing of pinned column base plates for hollow sections 5
Figure 4	Use of steel shims 9
Figure 5	Shear key details 9
Figure 6	Tolerances permitted by AS 4100 in anchor bolt location 10
Figure 7	Varieties of cast-in anchor bolts 12
Figure 8	Caged anchor bolt arrangement 13
Figure 9	Cored hole detail around anchor bolt13
Figure 10	Assumed loaded area for base plate subject to axial compression—cantilever method 16
Figure 11	Assumed loaded area for Murray- Stockwell Method16
Figure 12	Stress distribution on shear key 18
Figure 13	Effective width of base plate resisting bending 21
Figure 14	Murray yield line approach
Figure 15	Failure plane for anchor bolt pull- out used in references 2 and 8 24
Figure 16	Anchor bolt failure surfaces— bolt subject to tension
Figure 17	Design actions on column bases 27
Figure 18	Base plate dimensions and assumed loaded area of base plate (shown shaded) for open sections—Cantilever method 29
Figure 19	Base plate dimensions and assumed loaded area of base plate (shown shaded) for closed sections—Cantilever method 30
Figure 20	Murray-Stockwell model— assumed shape of pressure distribution 31
Figure 21	Column embedment detail
5	

	Page
Figure 22	Effective tensile areas to free edges 37
Figure 23	Shear kev detail
Figure 24	Dimensions of shear key
Figure 25	Shear key to resist shear force in two directions
Figure 26	Break-out cone assumptions41
Figure 27	Reinforcement to failure cone of anchor bolt subject to shear force42
Figure 28	Yield line layout near the bolt hole46
Figure 29	Geometry for RHS/SHS base plate bolts on two sides only47
Figure 30	Geometry for RHS/SHS base plate bolts on four sides48
Figure 31	Geometry for RHS/SHS base plate bolts in four corners only49
Figure 32	Geometry for circular CHS base plate50
Figure 33	Concrete breakout cone for single anchor bolt53
Figure 34	Concrete breakout cone for anchor bolt group54
Figure 35	Concrete breakout cone for anchor bolt near edge54
Figure 36	Lateral bursting force for anchor bolts subject to tension and near an edge55
Figure 37	Steel reinforcement to anchor bolts subject to tension55
Figure 38	Design example 1 axial compression and shear58
Figure 39	Concrete pier tie reinforcement61
Figure 40	Design example 2 axial compression or axial tension and shear62
Figure 41	Concrete breakout cone for single anchor bolt66
Figure 42	Concrete breakout cones for anchor bolt group66

LIST OF TABLES

	Page
Table 1	Base plate dimensions universal beam and column sections
Table 2	Base plate dimensions parallel flange channel sections7
Table 3	Base plate dimensions welded beam and column sections
Table 4	Recommended sizes of anchor bolt holes and washers in base plates
Table 5	Strength of plate to AS 3678 Grade 250 32
Table 6	Design dimensions for axial compression

	Pag	е
Table 7	Design variables for axial compression3	3
Table 8	Minimum concrete edge distances Grade 4.6 bolts/ Grade 250 rods4	1
Table 9	Design parameters—I-section with 2 bolts4	.3
Table 10	Design parameters—I-section with 4 bolts4	4
Table 11	Design parameters—PFC section with 2 bolts4	5

PREFACE

Design Guide 7 forms part of a series of connection publications by the Australian Steel Institute (ASI) covering capacity tables, theory and design of individual simple connections, known as the Structural Steel Connections Series, Part 1, Simple Connections: 1st ed. 2007 ('Simple Connection Series'). This series details the method of design and provides capacity tables and detailing parameters for a range of simple connections commonly used for structural steel in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabricating and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. The Simple Connections Series, in conjunction with the Structural Steel Connection Series, Part 2, Rigid Connections (collectively the Structural Steel Connections Series or 'Connection Series'), replaces and enhances an ASI flagship publication first released in 1978 at which time connection design theories were developed for the purpose of generating and releasing connection capacity tables. The first three editions were released in permissible stress format. The fourth edition Design of Structural Connections (often referred to as the Green Book) was released in 1994 in limit state format but there was no subsequent release of a limit state companion document containing connection design capacity tables.

The current Connections Series format with separate design guides for individual connection types is intended to facilitate addition to or revision of connection model theory using relevant new local or international research as deemed appropriate by the ASI. Connection models developed using the Handbook 1 theory follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection capacity assessment.

DESIGN GUIDE 7 covers the pinned column base plate connection. The recommended design model draws extensively on the American Institute of Steel Construction Steel Design Guide 1 'Base plate and anchor rod design' Second Edition and on the Australian Steel Institute publication Steel Construction Vol. 36 No. 2, September 2002, 'Design of pinned column base plates'.

It is to be emphasised that the recommended design model is considered the most representative of the behaviour of the connection in the opinion of ASI. It is not intended to suggest that other design models may not result in adequate connection capacity.

Engineering Systems has worked closely with the Australian Steel Institute to further develop Limcon as the companion program for this new Connection Design Guide Series. The latest version of Limcon fully implements the new connection design models. The Limcon output for one or more of the worked examples is included in an appendix to each Design Guide. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the Design Guide capacity tables.

An appendix to each Design Guide also contains an ASI comment form. Users of this publication are encouraged to photocopy this one page form and forward any suggested improvements which may be incorporated into future editions.

T.J. Hogan

ABOUT THE AUTHOR

Tim Hogan is Consultant to and retired Director of SCP Consulting Pty Ltd. His academic achievements include a Bachelor of Engineering from the University of NSW with 1st Class Honours and the University Medal. Post graduate qualifications include a Master of Engineering Science and a Master of Business Administration. Tim is a Member of the Institution of Engineers Australia with CPEng (Ret.) and FIEAust status.

His early experience was on bridge design and construction with the NSW Public Works Department and subsequently as Development Engineer and then Engineering Manager with the Australian Institute of Steel Construction until 1980. Consulting experience with SCP Consulting since 1980 included design and supervision of large steel framed buildings, industrial buildings, mill buildings, retail developments, defense infrastructure and composite steel-concrete buildings. His published works deal primarily with the areas of composite construction, steel connections, fabrication and erection of steel structures and he was a major contributor and editor of the Commentary to AS 4100. He is a member of a number of Standards Australia Committees dealing with steel and composite structures and is currently Chairman of Committee BD-001 Steel Structures and BD-032 Composite Construction. He received an award from Standards Australia for his contributions to writing of Australian Standards.

