12 DESIGN CAPACITY TABLES

The following DESIGN CAPACITY TABLES are provided, derived using DESIGN CHECK NOS 1 to 9 inclusive.

12.1 Four bolt unstiffened end plate

- Table 6 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane Welded beam/Universal beam sections > 300 mm deep
- Table 7 Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane Universal beam sections > 200 mm deep

12.2 Four bolt stiffened end plate

- Table 8 Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane Welded beam/Universal beam sections > 300 mm deep
- Table 9 Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane Universal beam sections > 200 mm deep

12.3 Six bolt unstiffened end plate

- Table 10 Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane Welded beam/Universal beam sections > 450 mm deep
- Table 11 Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane Universal beam sections > 350 mm deep

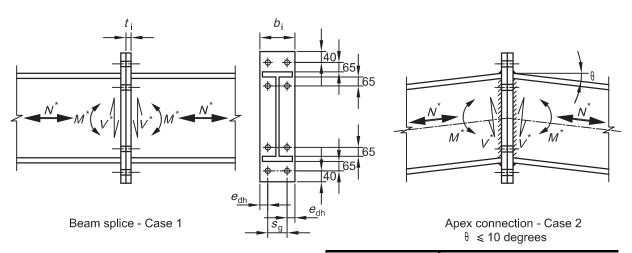

12.4 Eight bolt stiffened end plate

Table 12 Design moment capacity of connection ϕM_{conn} —Eight bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane Welded beam and universal beam sections > 520 mm deep

TABLE 6

DESIGN MOMENT CAPACITY OF CONNECTION $\phi M_{\rm conn}$ FOUR BOLT UNSTIFFENED END PLATE M24 BOLTS 8.8/TB CATEGORY THREADS EXCLUDED FROM SHEAR PLANE WELDED BEAM/UNIVERSAL BEAM SECTIONS > 300 MM DEEP (TABLE DEVELOPED USING THICK PLATE THEORY)

					CASE 1		CASE 2 0≠0, N*≠0				
Welds Grade 250 pl		ite Max V*		θ=0, <i>N</i> *=0	Max V*	Max N*	φM _{conn}				
Section, Grade 300	φMs	Flange	Web	Width	Thickness	Gauge	(plus or minus)	φ <i>M</i> _{conn}	(plus or minus)	(Tens or Comp)	Refer Note
	kNm	_		b i	t i	S g	kN	kN.m	kN	kN	kNm
700WB130	1210	FPBW	8	270	28	170	660	636	165	224	557*
700WB115	1020	FPBW	8	270	28	170	582	632	165	197	563
610UB125	927	FPBW	8	250	28	170	399	554	177	201	492
610UB113	829	FPBW	8	250	28	170	343	551	165	182	495
610UB101	782	FPBW	8	250	28	170	222	549	165	175	495
530UB92.4	640	FPBW	10	230	28	150	563	484	140	159	441
530UB82.0	558	FPBW	10	230	28	150	525	481	131	142	444
460UB82.1	496	FPBW	10	220	28	140	472	415	118	141	383
460UB74.6	449	FPBW	10	220	28	140	431	414	108	128	385
460UB67.1	399	FPBW	8	220	28	140	400	399	100	116	386
410UB59.7	324	FPBW	8	220	28	140	328	324	328	103	324
410UB53.7	304	FPBW	8	220	28	140	317	304	317	99.0	304
360UB56.7	273	FPBW	8	220	28	140	297	273	297	98.0	273
360UB50.7	242	FPBW	8	220	25	140	269	242	269	87.5	242
360UB44.7	222	FPBW	8	220	25	140	252	222	252	82.5	222
310UB46.2	197	FPBW	6	220	25	140	213	197	213	80.0	197
310UB40.4	182	FPBW	6	220	25	140	192	182	192	75.0	182

NOTES:

 ϕM_s = design section moment capacity, ϕM_{conn} = design moment capacity of connection.

Case 1 applies to straight flexural member splices (i.e. θ =0) with no axial force (N^* =0).

Case 2 applies to connections where θ is within the range -10 to 10 degrees, and design axial force (N^*) does not exceed the value tabulated (approx 5% of design section capacity). Axial/moment combination to be checked separately, for the beam section.

Design shear force (V^*) is the **MINIMUM** of **MAXIMUM** of 0.15 ϕ V_{ν} (design shear capacity) and 40 kN.

 $Maximum \ \textit{V*} \ limited \ to \ 0.6 \\ \phi \textit{V}_{\textit{V}} \ to \ ensure \ \textit{M*}, \ \textit{V*} \ combination \ is \ satisfied \ for \ the \ beam \ section, \ and \ to \ bolt \ design \ shear \ capacity,$

Welds: E48XX/W50X electrodes assumed.

Fillet weld size given is minimum required, a larger size or FPBW may be used.

FPBW = full penetration butt weld. All welds Category SP.

Horizontal edge distance e_{dh} = (b_i – s_g) / 2; different for each section size but always \geq 36 mm.

^{*} indicates $\phi \textit{M}_{\text{conn}}$ is less than recommended minimum of 0.5 ($\phi \textit{M}_{\text{s}}).$

DESIGN GUIDE 10 Bolted moment end plate beam splice connections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 10 Bolted moment end plate beam splice connections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 10: Bolted moment end plate beam splice connections

1st ed.

Bibliography.

ISBN 978 1 921476 10 5 (pbk.). ISBN 978 1 921476 11 2 (pdf.).

1. Steel, Structural—Standards – Australia.

2. Steel, Structural—Specifications – Australia.

3. Joints, (Engineering)—Design and construction.

I. van der Kreek, N.

II. Australian Steel Institute.

III. Title

(Series: Structural steel connection series).

Also in this series:

Handbook 1: Design of structural steel connections
Design Guide 1: Bolting in structural steel connections
Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections Design Guide 4: Flexible end plate connections Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate beam to column moment connections

Design Guide 13: Splice connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

This publication originated as part of Design of structural connections

First edition 1978

Third edition 1988

Fourth edition 1994

Second edition 1981

CONTENTS

		Р	age		Р	age
Lis	st of fig	gures	iv	9.5	DESIGN CHECK NO. 5—Design	
	st of ta	bles	V		capacity of bolts in shear	26
	eface		vi	9.6	DESIGN CHECK NO. 6—Design	
		e author	vii 		capacity of end plate at	07
		e contributing author	vii	0.7	tension flange	27
ΑC	KNOWI	edgements	viii	9.7	DESIGN CHECK NO. 7—Design capacity of end plate in shear	31
1	CON	CEPT OF DESIGN GUIDES	1	9.8	DESIGN CHECK NO. 8—Design	31
	1.1	Background	1	0.0	requirements for stiffener to	
		· ·			end plate	32
2	DESC	CRIPTION OF CONNECTION	2	9.9	DESIGN CHECK NO. 9—Design	
2	TVDI	CAL DETAILING OF CONNECTION	1 1		capacity of stiffener welds to	
,	1 1 1 1	CAL DETAILING OF CONNECTION			end plate	33
4	DETA	AILING CONSIDERATIONS	6	10 DESI	GN EXAMPLES	34
_		400 DEGUIDENENTO			Design example No. 1—Four bolt	34
5	AS 4	100 REQUIREMENTS	8	10.1	unstiffened end plate beam splice	34
გ	BASI	S OF DESIGN MODEL	9	10.2	·	•
•	<i>D</i> , (0.	o or begin woble	0		stiffened apex connection	37
7	CALC	CULATION OF DESIGN ACTIONS	. 11			
_	550	0141511555 5501011140551		11 REFE	RENCES	41
8		OMMENDED DESIGN MODEL— MARY OF DESIGN CHECKS	17	12 DESI	GN CAPACITY TABLES	42
	SUIVI	WART OF DESIGN CHECKS	. 17		Four bolt unstiffened end plate	43
9	REC	OMMENDED DESIGN MODEL	. 20		Four bolt stiffened end plate	45
	9.1	DESIGN CHECK NO. 1—Detailing			Six bolt unstiffened end plate	47
		requirements	20	12.4	Eight bolt stiffened end plate	49
	9.2	DESIGN CHECK NO. 2—Design		A DDENIE	2050	
		capacity of welds to beam flanges	22	APPEND		5 0
	9.3	DESIGN CHECK NO. 3—Design	00	A B	Thick and thin end plate behaviour Limcon software	52
	9.4	capacity of welds to beam web DESIGN CHECK NO. 4—Design	23	C	ASI Design Guide 10	JZ
	J.4	capacity of bolts at tension flange	25	J	comment form	59

LIST OF FIGURES

	Page	Page
Figure 1	Bolted moment end plate beam splice connection	Figure 15 Notation used for 6 bolt (2/4) unstiffened end plate19
Figure 2	Forms of extended bolted end plate connection 3	Figure 16 Notation used for 8 bolt (2/6) unstiffened end plate19
Figure 3	Typical detailing for unstiffened variations of extended bolted moment end plate 4	Figure 17 Clearance dimensions a_f , a_e , s_{po} 21 Figure 18 End plate stiffener detailing21
Figure 4	Typical detailing for stiffened variations of extended bolted moment end plate 5	Figure 19 Flange weld design actions
•	Shims used between end plates 6 Clearance required for	unstiffened end plate
Figure 7 Figure 8	tensioning bolts	Figure 23 Yield line pattern 6 bolt (2/4) unstiffened end plate
Figure 9	Calculation of force components— Apex connection	Figure 25 Yield line pattern 8 bolt (4/4) stiffened end plate30
Figure 10	Calculation of force components— Mitred knee connection	Figure 26 Beam splice example no. 134 Figure 27 Stress distribution in beam of
Figure 11	Alternative stress distributions in beam 15	example no. 1
Figure 12	Notation used for 4 bolt (2/2) unstiffened end plate	Figure 29 Stress distribution in rafter for example no. 238
Figure 13	Notation used for 4 bolt (2/2) stiffened end plate18	Figure 30 Stiffener detailing example no. 240 Figure 31 End plate behaviour idealisation50
Figure 14	Notation used for 8 bolt (4/4) stiffened end plate	

LIST OF TABLES

	Page		Page
Table 1	Range of tested parameters (Ref. 6) 10	Table 9	Design moment capacity of connection ϕM_{conn} —Four bolt
Table 2	Equations to be applied for different configurations and connection elements		stiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane—
Table 3	Recommended limits on detailing parameters		Universal beam sections > 200 mm deep46
Table 4	Strength of plate to AS 3678 Grade 250	Table 10	connection ϕM_{conn} —Six bolt
Table 5	Strength of flat bars to AS 3679.1 Grade 300 32		unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane—
Table 6	Design moment capacity of connection ϕM_{conn} —Four bolt unstiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane—Welded	Table 11	Welded beam/Universal beam sections > 450 mm deep47 Design moment capacity of connection ϕM_{conn} —Six bolt unstiffened end plate
	beam/Universal beam sections > 300 mm deep 43		M20 bolts 8.8/TB category threads excluded from shear
Table 7	Design moment capacity of connection ϕM_{conn} —Four bolt		plane—Universal beam sections > 350 mm deep48
	unstiffened end plate M20 bolts 8.8/TB category threads excluded from shear plane—Universal beam sections > 200 mm deep 44	Table 12	Design moment capacity of connection ϕM_{conn} —Eight bolt stiffened end plate M24 bolts 8.8/TB category threads excluded
Table 8	Design moment capacity of connection ϕM_{conn} —Four bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane—Welded beam/Universal beam sections > 300 mm deep		from shear plane—Welded beam and universal beam sections > 520 mm deep49

