Design capacity tables for structural steel Volume 4: Rigid connections—Open sections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition—2009

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design capacity tables for structural steel Volume 4: Rigid connections—Open sections

Copyright © 2009 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2009 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Hogan, T.J.

Design capacity tables for structural steel. Volume 4: Rigid connections-Open sections

1st ed. Bibliography. ISBN 978 1 921476 18 1 (pbk.). ISBN 978 1 921476 19 8 (pdf.).

- Steel, Structural—Standards Australia. Steel, Structural—Specifications Australia. 1.
- 2.
- 3. Joints, (Engineering)—Design and construction.
- Ι. van der Kreek. N.
- Australian Steel Institute. 11.
- Title III.

(Series: Structural steel connection series).

Also in this series:

Design Capacity Tables for Structural Steel Volume 3: Simple connections—Open sections Handbook 1: Design of structural steel connections

Design Guide 1: Bolting in structural steel connections

- Design Guide 2: Welding in structural steel connections
- Design Guide 3: Web side plate connections
- Design Guide 4: Flexible end plate connections
- Design Guide 5: Angle cleat connections
- **Design Guide 6: Seated connections**

Design Guide 10: Bolted end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate to column moment connections

Design Guide 13: Splice connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

This publication originated as part of Design of structural connections First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

CONTENTS

			Page
Lis	List of figures		
Lis	List of tables		
	eface		vii
		e author	viii
		e contributing author	viii
Ac	knowl	edgements	ix
1	CON	CEPT OF DESIGN GUIDES	1
-	1.1	Background	1
	1.2	Preliminary considerations	2
	1.3	Included connections	3
2	GEOI	METRICAL DETAILS	9
2	2.1	Standard parameters	9
	2.2	Connection components—	5
	2.2	Bolted moment end plate	10
	2.3	Connection components—	10
	-	Column stiffeners	12
	2.4	Bolt gauges to columns for bolted	
		moment end plate connection	15
	2.5	Flange cover plates for splices	16
	2.6	Bolting layout to webs for bolted	
		web splices	20
	2.7	Web cover plate components for	
		bolted splices	22
3	DESI	GN BASIS	23
•	3.1	Design models	23
	3.2	Minimum design actions on	
		connections	24
4		DED BEAM TO COLUMN MOMEN	т
4			
	4.1	Description of connection	20
	4.2	Typical detailing of connection	31
	4.3	Calculation of design actions	33
	4.4	Recommended Design Model—	00
		Summary of design checks	34
	4.5	Design capacity tables	35
	4.6	Configuration A—Full penetration	
		butt welds to flanges and webs	36
	4.7	Configuration B—Fillet welds	
		required to develop section	
		moment capacity	38
	4.8	Configuration C—Fillet welds to	
		flanges and web	40
5	BOI T	ED MOMENT END PLATE BEAM	
5		CE CONNECTION	42
	5.1	Description of connection	42
	5.2	Typical detailing of connection	44
	5.3	Calculation of design actions	48
	5.4	Recommended design model—	
		Summary of design checks	49

			Page
	5.5	Design capacity tables	50
	5.6	Four bolt unstiffened end plate-	-
	57	Design capacity tables	51
	5.7	Four bolt stiffened end plate— Design capacity tables	53
	5.8	Six bolt unstiffened end plate—	00
		Design capacity tables	55
	5.9	Eight bolt stiffened end plate—	
		Design capacity tables	57
6		ED END PLATE TO COLUMN	
	6.1 6.2	Description of connection Typical detailing of connection	58 61
	6.3	Calculation of design actions	66
	6.4	Recommended design model—	
		Summary of design checks	67
	6.5	Design capacity tables	68
	6.6	Four bolt unstiffened end plate	69
	6.7 6.8	Four bolt stiffened end plate	73 75
	6.9	Six bolt unstiffened end plate Eight bolt stiffened end plate	75 77
7		ED COVER PLATE SPLICE	
	7.1	Description of connection	78 79
	7.2 7.3	Typical detailing of connection Calculation of design actions	79 82
	7.4	Recommended design model—	02
		Summary of design checks	83
	7.5	Design capacity tables	84
8	BOLT	ED/WELDED COVER PLATE	
-		CE	90
	8.1	Description of connection	90
	8.2	Typical detailing of connection	91
	8.3 8.4	Calculation of design actions	94
	0.4	Recommended design model— Summary of design checks	95
	8.5	Design capacity tables	96
•			400
9	FULL 9.1	Y WELDED SPLICE Description of connection	102 102
	9.1 9.2	Typical detailing of connection	102
	9.3	Calculation of design actions	105
	9.4	Recommended design model—	
		Summary of design checks	106
	9.5	Design capacity tables	107
10 REFERENCES110			110
APPENDIX			
	A	Rigid connections DCTs, V4	
		comment form	111

P

LIST OF FIGURES

Page

	1 dyc
Figure 1	Typical detailing for unstiffened variations of extended bolted
	moment end plate 4
Figure 2	Typical welded beam to column moment connection
Figure 3	Typical detailing for 4 bolt
C	unstiffened bolted end plate to column connection
Figure 4	Typical detailing of bolted cover plate splice
Figure 5	Typical detailing of bolted/welded cover plate splice7
Figure 6	Typical detailing of welded splice 8
Figure 7	Bolting layouts for M24 bolts in bolted moment endplate 11
Figure 8	Bolting layouts for M20 bolts in bolted moment endplate
Figure 9	Transverse stiffener
F ¹ 40	arrangement 12
Figure 10	Geometry of flange splice plates 16
Figure 11	Web splice bolting layout M20 bolts 20
Figure 12	Web splice bolting layout M24 bolts 21
Figure 13	Web cover plate components 22
Figure 14	Typical welded beam to column moment connection
Figure 15	Alternative arrangements for welded beam to column connections
Figure 16	Arrangement with shop welded
	beams and column splices
	welded moment beam to column connection
Figure 10	
rigule lo	Stub girder connection, fully shop welded beam stub, beam
Eiguro 10	spliced on site
Figure 19	connection—including erection cleat
Figure 20	Design actions on beam
E '	at column
-	Bolted moment end plate beam splice connection 42
Figure 22	Forms of extended bolted end plate connection
Figure 23	Typical detailing for unstiffened variations of extended bolted
	moment end plate 44
Figure 24	Typical detailing for stiffened
i iguic 24	variations of extended bolted moment end plate

	Pag	je
Figure 25	Shims used between end plates4	16
-	Clearance required for	
	tensioning bolts	
-	Design actions at connection	18
Figure 28	Bolted end plate to column	- 0
Figure 20	moment connections	90
Figure 29	Forms of extended end plate connection	59
Figure 30	Possible configurations of the	
gui e e e	bolted moment end plate	
	beam to column connection6	30
Figure 31		
	unstiffened bolted end plate to column connection6	24
Eiguro 32	Typical detailing for haunched)
Figure 52	rafter to column bolted end	
	plate connection6	32
Figure 33	Removal of column flange with	
	thicker plate inserted6	
-	Column doubler plate types6	33
Figure 35	Shims used between end	
Figure 00	plate and column flange	54
Figure 36	Clearance required for tensioning bolts6	35
Figure 37	Design actions on beam at	,0
i iguio or	column	66
Figure 38	Bolted cover plate splice	78
Figure 39	Typical detailing in flexural	
	member7	79
Figure 40	Typical detailing in column/	
Eiguro 41	beam-column	30
Figure 41	Typical detailing in tension member	30
Figure 42	Design actions at splice	
-	Bolted/welded cover plate	
0	splice	90
Figure 44	Typical detailing in flexural	
	member) 1
Figure 45	Typical detailing in column/	~~
E inung 4 0	beam column	92
Figure 46	Typical detailing in tension member	22
Figure 47	Design actions at splice	
-	Fully welded splice	
-	Typical detailing of welded	
U	splice)3
Figure 50	Use of backing strips10)4
Figure 51	Preferred splice location in	
	column	
Figure 52	Design actions at splice10)5

P

LIST OF TABLES

Page

	Page
Table 1	Connection components bolted moment end plate
Table 2	Stiffener material design strengths
Table 3	Flat bar components as stiffeners
Table 4	Flat bar width/column combinations suited to stiffening 14
Table 5	Plate width/column combinations suited to stiffening
Table 6	Suitable bolt gauges for column section flanges 15
Table 7	Flange cover plate width/ thickness combinations for one plate bolted cover plate splice 17
Table 8	Flange cover plate width/ thickness combinations for one plate bolted/welded cover plate splice
Table 9	Flange cover plate width/ thickness combinations for three plate bolted cover plate splice 18
Table 10	Flange cover plate width/ thickness combinations for three plate bolted/welded cover plate splice
Table 11	Values of <i>n</i> _{max} in web splice
Table 12	Values of <i>n</i> _{max} in web splice
Table 13	Universal beams, Grade 300 design section moment and web capacities
Table 14	Welded beams, Grade 300 design section moment and web capacities
Table 15	Universal beams Grade 300 design section moment and web capacities
Table 16	Welded beams Grade 300 design section moment and web capacities
Table 17	Universal beams Grade 300 weld configurations to achieve design section moment capacity ϕM_s
Table 18	
Table 19	

		Page
Table 20	Universal beams grade 300 design moment capacity of welded connection with flange welds and web welds	41
Table 21	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts welded beam/universal beam sections > 300 mm deep	
Table 22	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts universal beam sections > 200 mm deep	
Table 23	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M24 bolts welded beam/universal beam sections > 300 mm deep	53
Table 24	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M20 bolts universal beam sections > 200 mm deep	54
Table 25	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M24 bolts welded beam/universal beam sections > 450 mm deep	
Table 26	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M20 bolts universal beam sections > 350 mm deep	
Table 27	Design moment capacity of connection ϕM_{conn} eight bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane welded beam and universal beam sections > 520 mm deep	
Table 28	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 300 mm deep	
Table 29	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep	

Table 30	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts haunched universal beam sections > 300 mm deep
Table 31	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts haunched universal beam sections > 200 mm deep
Table 32	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 300 mm deep 73
Table 33	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep
Table 34	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 450 mm deep
Table 35	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 350 mm deep
Table 36	Design moment capacity of connection ϕM_{conn} eight bolt stiffened end plate M24 bolts unhaunched welded beam and universal beam sections > 520 mm deep
Table 37	Design moment capacity of bolted single cover plate splice universal beam sections < 400 deep M20 bolts
Table 38	Design moment capacity of bolted single cover plate splice universal beam sections > 400 deep M24 bolts
Table 39	Design moment capacity of bolted three cover plate splice universal column sections > 240 deep M24 bolts

Table 40	Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts
Table 41	Design moment capacity of bolted three cover plate splice 900WB/1000WB welded beam sections M24 bolts89
Table 42	Design moment capacity of bolted/welded single cover plate splice universal beam sections < 400 deep M20 bolts, 6 fillets to flange plates, 5 fillets to web plates
Table 43	Design moment capacity of bolted/welded single cover plate splice universal beam sections > 400 deep M24 bolts, 8 or 6 fillets to flange plates, 5 fillets to web plates
Table 44	Design moment capacity of bolted/welded three cover plate splice universal column sections M24 bolts, 6/8 fillets to flange plates and web plates and 6 fillets to web plates
Table 45	Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts, 6/8 fillets to flange plates and 5 fillets to web plates
Table 46	Design moment capacity of bolted/welded three cover plate splice 900WB/1000WB welded beam sections M24 bolts, 8 or 6 fillets to flange plates and 6 fillets to web plates101
Table 47	Universal beams Grade 300 design section moment and shear capacities107
Table 48	Welded beams Grade 300 design section moment and shear capacities108
Table 49	Universal columns/welded columns grade 300 design section moment and shear capacities

₽

PREFACE

This new series of connection publications by the Australian Institute of Steel (ASI) covering capacity tables, theory and design of individual rigid connections will be known as the Structural Steel Connections Series, Part 2: 1st ed. 2009 ('Connection Series, Part 2'). This Connection Series, Part 2 details the method of design and provides capacity tables and detailing parameters for a range of rigid connections commonly used for structural steel in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabrication and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. This Connections Series, Part 2 in conjunction with the Connection Series, Part 1 for simple connections (collectively the Structural Steel Connections Series or 'Connection Series') replaces and enhances an ASI flagship publication first released in 1978 at which time connection design theories were developed for the purpose of generating and releasing connection capacity tables. The first three editions were released in permissible stress format. The fourth edition Design of Structural Connections (often referred to as the Green Book) was released in 1994 in limit state format but there was no subsequent release of a limit state companion document containing connection design capacity tables.

This new Connections Series, Part 2 in limit state format to the Australian Standard for Steel Structures AS 4100—1998 (Ref. 1) separates the Design Capacity Tables from the Connection Theory Handbook 1 and Design Guides for connection parts and has a separate Design Guide for each individual rigid connection type. Connection model elemental theory is referenced back to Handbook 1 in each type of connection formulated. Revision of the ASI connection theory and models included surveys of best practice in the Australian steel industry.

The new Connections Series format with separate design guides for individual connection types is intended to facilitate addition to or revision of connection model theory using any relevant new local or international research as deemed appropriate by the ASI. Connection models developed using the Handbook 1 theory follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection capacity assessment. This Connection Series, Part 2 contains both design capacity tables and design guides for individual rigid connections. *Design Capacity Tables V4: Rigid Connections—Open sections* consolidates design capacity tables contained in the individual design guides, (specifically Design Guide 10: *Bolted moment end plate to beam splice connections*; Design Guide 11: *Welded beam to column moment connection*; Design Guide 12: *Bolted end plate to column moment connection*; Design Guide 13: *Splice connections*) and is collectively known as the *Rigid connection design capacity tables V4 ('Rigid connection DCT's V4)*.

Engineering Systems has worked closely with the Australian Steel Institute to further develop Limcon as the companion program for this new Connection Series. The latest version of Limcon fully implements the new connection design models and was employed in checking the design capacity tables. The Limcon output for one or more of the worked examples is included in an appendix to each design guide for each connection design type. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the design capacity tables provided in the Connection Series.

An appendix to each publication in the series also contains an ASI comment form. Users of this Connections Series are encouraged to photocopy this one page form and forward any suggested improvements which may be incorporated into future editions.

T.J. Hogan N. van der Kreek

ABOUT THE AUTHOR

Tim Hogan is Consultant to and retired Director of SCP Consulting Pty Ltd. His academic achievements include a Bachelor of Engineering from the University of NSW with 1st Class Honours and the University Medal. Post graduate qualifications include a Master of Engineering Science and a Master of Business Administration. Tim is a Member of the Institution of Engineers Australia with CPEng and FIE Aust. status.

His early experience was on bridge design and construction with the NSW Public Works Department and subsequently as Development Engineer and then Engineering Manager with the Australian Institute of Steel Construction until 1980. Consulting experience with SCP Consulting since 1980 has included design and supervision of large steel framed buildings, industrial buildings, mill buildings, retail developments, defense infrastructure and composite steel-concrete buildings. His published works deal primarily with the areas of composite construction, steel connections, fabrication and erection of steel structures and he was a major contributor and editor of the Commentary to AS 4100. He is a member of a number of Standards Australia Committees dealing with steel and composite structures and is currently Chairman of Committee BD-001 Steel Structures and BD-032 Composite Construction. He received an award from Standards Australia for his contributions to writing of Australian Standards.

ABOUT THE CONTRIBUTING AUTHOR

Nick van der Kreek is OneSteel Manufacturing's Technical Development Manager and has held various technical and marketing roles during his 22 years with OneSteel (BHP Steel prior to 2000). Nick's activities included engineering development and design support associated with composite and steel framed building solutions—either of a generic nature or specific designs for many notable Australian multi-storey buildings. Nick is the principal author of the OneSteel composite software.

Nick has a BE from the University of Queensland and a Graduate Diploma in Computing from the University of Melbourne.

ACKNOWLEDGEMENTS

The author would like to extend special thanks to:

The ASI Connections steering committee consisting of Richard Collins (Engineering Systems), Nick van der Kreek and Anthony Ng (OneSteel Market Mills), Arun Syam (Australian Tube Mills) for their respective contributions with the development and review of the technical and editorial content of the revised ASI Connection Manual.

Significant contributions were made by:

- Richard Collins—Engineering Systems in the development and upgrade of the Limcon software code in parallel with the design theory and aiding in the editing and validation of the revised models.
- Biometrical Data Processing for technical typesetting expertise.
- Whizzcad Pty Ltd with drafting and graphics for publishing.
- ASI State Engineering & Construction special Sub-Committees for progressive engineering and industry review of manuscripts.

Together with support of:

• All facets of the ASI membership including design engineers, steelwork detailers and fabricators in contributing industry best practice and standards through ASI surveys and direct consultation to establish the theory and geometry in this new ASI Connection Manual.

