$$a_{\max} = \frac{1}{2\beta} x \frac{580e^{-0.35fin}}{M_e}$$
 (16)

Equation 16 is a powerful one. It allows direct assessment of the maximum acceleration of a single degree of freedom system being driven at resonance by a pedestrian dynamic load – provided the natural frequency f_n , the damping ratio β and the equivalent mass M_e are known. Once the acceleration a_{max} at a particular natural frequency is determined this can be compared to the "acceptable accelerations" defined in figure 1.

It is important to recognise that there are no approximations in equation (15). It is an "exact" mathematically derived prediction for a single degree of freedom system. Equation 16 contains an approximation to the variation of the dynamic stepping force with frequency that is substantiated by experimental data. The more significant approximation is that involved in modelling the "real" structure to the single degree of freedom system – and this in turn is concerned with the estimation of the natural frequency f_n , the equivalent mass M_e and the system damping β .

The two referenced papers by Allen and Murray and by Ng and Yum both replace the equivalent mass M_e by half the total mass $\frac{1}{2}$ M, because for beam and slab type systems the equivalent mass is generally close to half the total mass involved in the vibration as previously discussed. Next they replace the experimentally determined magnitude of the stepping load ($580 e^{-0.35 fn}$) by half of this value on the basis that a person does not continue walking indefinitely in the same spot and thus the full potential acceleration will not be reached. In addition they divide by g to obtain the acceleration as a fraction of the acceleration due to gravity to match the limits of acceptability defined in figure 1.

$$a_{\max} / g = \frac{1}{2\beta} x \frac{0.5x580e^{-0.35fn}}{0.5Mg}$$

= $\frac{290e^{-0.35fn}}{\beta W}$ With W in Newtons (17)

With W being the total (not equivalent) weight of the mass of the system (in Newtons) that is involved in the mode corresponding to the natural frequency f_n (Hz).

In different variants of the Murray method proposed at different times by different authors, equation 17 has been algebraically rearranged to the following forms with the limit of $a_{max.limit}$ / g taken as 0.5% or 0.005:

βW	must be >	290 e ^{-0.35fn} / (a _{max.limit} / g)	=	58 000 x e ^{-0.35fn}	Newtons	(17a)
fn	must be >	2.86 ln(58 000 / βW)		With V	N in Newtons	(17b)

The damping ratio β for assessment of equation 17

The magnitude of the damping ratio can only be assessed on the basis of published recommendations based on testing. Allen and Murray recommend the following values;

Offices, residences, churches	0.03
Shopping malls	0.02
Pedestrian bridges	0.01

They also provide more detail suggesting the value of β as "0.05 for offices with full – height partitions and 0.02 for floors with few non structural components (ceilings, ducts, partitions etc) as can be found in churches".

Ng and Yum provide photos of typical office fitouts with recommendations for values of β as follows;

- Electronic office with work stations carpet and no services below $\beta = 0.02$
- Electronic office with work stations carpet and with services below $\beta = 0.025$
- Paper office with half height partitions, carpet, filing cabinets and $\beta = 0.03$ furniture with suspended ceiling, air conditioning ducts and services below,
- Paper office with full height partitions perpendicular to floor beams, carpet, $\beta = 0.05$ numerous filing cabinets, with suspended ceiling, air conditioning ducts and services below

In equation 17 the maximum acceleration is inversely proportional to β . A choice of β = 0.04 compared to 0.02 will cause a 100% change in the predicted acceleration. Consequently the designer must give careful consideration to the value of β adopted for design. For a typical office β = 0.025 should represent a conservative choice while anything above 0.03 would only be appropriate in very specific circumstances.

The natural frequency fn for assessment of equation 17

Equation 1 may be used to determine the natural frequency of the secondary and primary beams considered in isolation using $\delta_{\text{static.SB}}$ and $\delta_{\text{static.PB}}$. The "combined" natural frequency of a panel of floor consisting of both primary and secondary beams may be calculated using equation 1, but using the sum of the separate deflections ie $\delta_{\text{static.SB+PB}}$. Thus

$$f_{combined} = 0.18 \sqrt{\frac{g}{\delta_{static.SB} + \delta_{static.PB}}} \quad \text{Hertz}$$
(18)

Note that from equation 17, the maximum acceleration is strongly dependent on the natural frequency of the system. A 25% increase in natural frequency from 4 to 5 Hz causes a 32% decrease in maximum acceleration. Consequently an accurate estimate of the natural frequency is critical to the dynamic assessment.

The value of W for use in assessment of equation 17

There are two fundamentally different masses used in assessing dynamic performance of a floor system. The first is the "traditional" supported mass (or weight) for an individual beam that is used for assessment of δ_{static} and thus the natural frequency using equation 1. The second is the mass (or weight) "W" that is "involved in a particular natural frequency mode". This mass may be several times the traditional supported mass. In equation 17 an increase in W causes a reduction in maximum acceleration because, if the single pedestrian has to "excite" a large mass then it will be more difficult than to excite a relatively small mass – firstly because more mass means more inertia to mobilise and secondly because more moving mass means more damping.

Assessment of W, represents the most "mysterious" approximation required in order to evaluate equation 17. The weight "W" represents the mass of the floor system that is "involved" in a particular natural frequency mode. That is it represents the mass of the floor that moves significantly for a particular natural frequency mode. The nature of the problem may be illustrated by analogy to static analysis of a beam and slab system as illustrated in figure 5.

Figure 5 A "static" analogy to the problem of assessing W

For the floor system illustrated in figure 5, firstly imagine that there is no slab (or that the slab is very thin and flexible). For this situation, when a point load is applied to beam B4 then the load will be fully supported by this single beam. The only part of the floor that will deflect in response to the load at A will be directly in the vicinity of

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Composite Design Example for Multistorey Steel Framed Buildings

Copyright © 2007 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2007 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry: Durack, J.A. (Connell Wagner) Kilmister, M. (Connell Wagner) Composite Design Example for Multistorey Steel Framed Buildings 1st ed.

Bibliography. ISBN 978-1-921476-02-0

- 1. Steel, Structural—Standards Australia.
- 2. Steel, Structural—Specifications Australia.
- 3. Composite, (Engineering)—Design and construction.
- I. Connell Wagner
- II. Australian Steel Institute.
- III. Title

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. The design examples contained in this publication have been developed for educational purposes and designed to demonstrate concepts. These materials may therefore rely on unstated assumptions or omit or simplify information. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. Any reference to a proprietary product is not intended to suggest it is more or less superior to any other product but is used for demonstration purposes only. The Australian Steel Institute, its officers and employees and the authors, contributors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility whatsoever for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, contributors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

Table of contents

Table of contents	iii				
Preface					
Section A: INPUT INFORMATION					
A1. Client and Architectural Requirements					
A2. Site Characteristics					
A3. Statutory Requirements	5				
A4. Serviceability	8				
A5. Design Loads	9				
A6. Materials and Systems	10				
A7. Design Aids and Codes	11				
Section B: CONCEPTUAL AND PRELIMINARY DESIGN	12				
B1. Conceptual and Preliminary Design	13				
B1.1 Consideration of alternative floor framing systems– Scheme A	14				
B1.2 Consideration of alternative floor framing systems– Scheme B	15				
B1.3 Framing system for horizontal loading – initial distribution of load	16				
B1.4 Alternatives for overall distribution of horizontal load to ground	17				
B2. Preliminary Slab Design	21				
B3. From Alternatives to Adopted Systems	22				
B3.1 Adopted floor framing arrangement	22				
B3.2 Adopted framing arrangement for horizontal loading	23				
B4. Indicative Construction Sequence and Stages	24				
B4.1 The importance of construction stages in composite design	24				
B4.1 Indicative construction sequence and construction stages	25				
B4.2 Adopted construction sequence for design of erection columns	27				
B4.3 Core construction alternatives	27				
B4.4 Adopted construction method for the core	27				
B5. Preliminary Sizing of Primary and Secondary Beams	28				
B6. Plenum Requirements and Floor to Floor Height	30				
B7. Prelimary Column Sizes and Core Wall Thickness	33				
Section C: DETAILED DESIGN	35				
C1. Detailed Design - Introduction	36				
C2. Design Stages and Construction Loading	37				
C3. Detailed Load Estimation After Completion of Construction	38				
C3.1 Vertical loading	38				
C3.2 Wind loading.	39				
C3.3 Seismic loading Not considered	40				
C4. Erection Column Design	41				
C4.1 Load distribution for erection column design	42				
C4.2 Side Column C5 (typical of C5 to C10)	43				
C4.3 End column C2 (typical of C2, C3, C12 and C13)	44				
C4.4 Corner column C1 (typical of columns C1, C4, C11 and C14)	44				
C5. Floor Beams – Construction Stage 1	45				
C5.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – B41, B43 – 48)	45				
C5.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 to B12, B18,	46				
B19 – 21, B49 – 51 and B42)	46				
C5.3 Primary beams Group P2(9250, 6600) (B2, B6, B13 and B17)	47				
C6. Floor Beams – Construction Stage 3	48				
C6.1 Secondary beams Group S1(11 050, 2800) (Beams B22 – 41, B43 – 48)	48				
C6.2 Primary beams Group P1(9800, 5725) (Beams B1, B7 - B12, B18 – 21,	49				
B49 – 51 and B42)	49				
C6.3 Primary beams Group P2(9250, 6600) (Beams B2, B6, B13, B17)	49				
C7 Floor Beam Design for Occupancy Loading	50				
C7.1 Secondary beams Group S1(11 050, 2800) (Beams B19, B21, B22 - B41,	51				
B43 – B49 and B51)	51				

Ш

C7.2	Primary beams Group P1(9800.5725) (Beams B1, B7 to B12, B18)			
C7.3	Primary beams group P2(9050, 6600) (Beams B2, B6, B13, B17)			
C8. Assessment of Dynamic Performance of Floor System				
C8.1	Definition of the dynamic assessment process			
C8.2	Application of the dynamic assessment process			
C9 Final S	llab Design			
C9.1	Slab design for the office areas			
C9.2	Slab design for the compactus areas	80		
C10. Long	itudinal Shear Reinforcement Design			
C10.1	Introduction			
C10.2	Proprietory longitudinal shear reinforcement products	83		
C10.3	Secondary beams group S1, B22 typical – longitudinal shear design			
C10.4	Internal primary beams group P2, (B2 typical) longitudinal shear design	85		
C10.5	Primary beams P1, (B1 typical) – longitudinal shear design			
C10.6	Perimeter beams B19 to 21 and B49 to 51	88		
C11. Floor	System Design Review and Final Decisions			
C11.1	Floor design review			
C11.2	Final floor framing plan and deck reinforcement			
C12. Final	Design of RC Columns			
C13. Detai	led Design of the Core			
C13.1	Preliminary discussion and statement of limitations of this section			
C13.2	Basic modelling of the core using beam elements			
C13.3	The Space Gass Analysis Model			
C13.4	Model verification and static deflections for W _s			
C13.5	Dynamic analysis for natural frequency of building			
C13.6	Interpretation and application of stress resultants from Space Gass			
C13.7	Further investigation of the core using a Strand7 finite element model			
C13.8	Review of core investigations			
C14. Steel	Connection Design			
C14.1	Can it be built?			
C14.2	Representative connections			
C14.3	Web side plate connection design for $V^* = 142$ kN			
C14.4	Flexible end plate connection for $V^* = 2/9$ kN			
C14.5	B2 to core web side plate connection for $V^* = 308$ kN			
C14.6	Column splice for a load of $N^* = 1770$ kN			
C14.7	Column base plate for a load of N [*] = 1770 kN			
C15. Web				
C16. Some				
Appendix I Theory and discussion – composite slabs				
Appendix II Theory and discussion - composite beams				
Appendix III Dynamic assessment of the floor system				
Appendix I	V Theory and discussion steel connections			
Appendix \	/ Corrosion and fire protection			

IV IV