1 CONCEPT OF DESIGN GUIDES 1.1 Background

The ASI was formed in 2002 through the merger of Australian Institute of Steel Construction (AISC) and Steel Institute of Australia (SIA). The former AISC published a design manual giving guidance on the design of structural connections in steelwork (Ref. 2).

ASI is updating Reference 2 by way of the Connection Series including design guides dealing with connection parts and individual connection types. The overall series of Connections publications is known as the Structural Steel Connections Series.

The former AISC also published a manual containing standardised detailing for simple connections, accompanied by load tables (Ref. 3).

Wherever possible each design guide for individual connection types contains standardised detailing and design capacity tables for the connection type covered by that design guide derived using the design models in that design guide.

The Structural Steel Connections Series is a specialist series devoted to the design of connections in structural steel in accordance with current Australian Standard AS 4100 (Ref. 1), reflecting the current state of knowledge of connection behaviour from test results. In some instances, the test evidence is sparse and in other instances the evidence is contradictory or clouded. Each design guide in the Connection Series has been written by weighing the evidence to provide recommended design procedures based in part on the design procedures used in equivalent manuals and/or published papers.

This Design Guide is intended to provide a recommended design model for the pinned column base plate connection which gives a realistic estimate of connection design capacity and considerable effort has been expended in researching and developing a simple, yet satisfactory design model which can be justified on the basis of the available research and current design practice. It is to be emphasised that for this connection, the design model presented is not the only possible model—merely the most representative of the behaviour of an individual connection in the opinion of the ASI.

It is therefore not intended to suggest that other models may not result in adequate connection capacity and further reference is made to the Disclaimer on page ii of this publication as to the required investigation and verification by a competent professional person or persons in regards to the accuracy, suitability and applicability of the materials provided in this Connections Series.

The recommended design model draws extensively on the American Institute of Steel Construction Steel Design Guide 1 'Base plate and anchor rod design' Second Edition and on Australian Steel Institute publication Steel Construction Vol. 36 No. 2 September 2002, 'Design of pinned column base plates' (References 7 and 8 respectively).

Design Guide 7 Pinned base plate connections for columns by

T.J. Hogan

first edition—2011

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Design Guide 7 Pinned base plate connections for columns

Copyright © 2011 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2011 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Hogan, T.J.

Design Guide 7: Pinned base plate connections

1st ed.

Includes bibliographic references. ISBN 978 1 9214762 4 2 (pbk.).

Steel, Structural—Standards – Australia. Steel, Structural—Specifications – Australia.

Joints (Engineering)—Design and construction.

Australian Steel Institute.

(Series: Structural steel connections series).

This publication originated as part of Design of structural connections

First edition 1978 Second edition 1981 Third edition 1988 Fourth edition 1994

Also in this series:

Design capacity tables for structural steel. Volume 3: Simple connections—Open sections

Handbook 1: Design of structural steel connections
Design Guide 1: Bolting in structural steel connections

Design Guide 2: Welding in structural steel connections

Design Guide 3: Web side plate connections

Design Guide 4: Flexible end plate connections

Design Guide 5: Angle cleat connections

Design Guide 6: Seated connections

Design Guide 10: Bolted moment end plate beam splice connections

Design Guide 11: Welded beam to column moment connections

Design Guide 12: Bolted end plate beam to column moment connections

Design Guide 13: Splice connections

Design capacity tables for structural steel. Volume 4: Rigid connections—Open sections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regard the services of a competent professional person or persons should be sought.

CONTENTS

			Page		F	Page
List of figures			iv	9.4	DESIGN CHECK NO. 4—Design	
List of tables			V		capacity for horizontal shear	
Preface			vi		transfer by friction at base	
About the author			vii		plate/concrete interface	35
Acknowledgements			viii	9.5	DESIGN CHECK NO. 5—Design	
					capacity for horizontal shear	
1		CEPT OF DESIGN GUIDES			transfer by bearing of embedded	
	1.1	Background	1		steel column	36
2	DES	CRIPTION OF CONNECTION	2	9.6	DESIGN CHECK NO. 6—Design	
	חבסי	CRIPTION OF CONNECTION	2		capacity for horizontal shear	
3	TYPI	CAL DETAILING OF CONNECTION	N 4		transfer through shear key	38
•		ione be in the or obtained in	• • • •	9.7	DESIGN CHECK NO. 7—Design	
4	DETAILING CONSIDERATIONS				capacity for horizontal shear	
	4.1	Base plate dimensions for open			transfer through anchor bolts	40
_		sections	6	10 DEC	OMMENDED DESIGN MODEL—	
	4.2	Base plate detailing	8		L TENSION AND SHEAR	43
	4.3	Anchor bolt detailing	11		DESIGN CHECK NO. 8—Design	43
	005	5 D5 01 UD 5145 NTO		10.1	capacity of steel base plate	43
5	COD	E REQUIREMENTS	14	10.2	DESIGN CHECK NO. 9—Design	70
6	BASIS OF DESIGN MODEL		15	10.2	capacity of weld at column base	51
	6.1	Axial compression	15	10.3	DESIGN CHECK NO. 10—Design	
	6.2	Horizontal shear	17		capacity of anchor bolts in tension	
	6.3	Anchor bolts in shear	19	10.4	DESIGN CHECK NO. 5	56
	6.4	Axial tension	21	10.5	DESIGN CHECK NO. 6	56
	6.5	Anchor bolts in tension	24	10.6	DESIGN CHECK NO. 7	56
	6.6	Anchor bolts subject to tension		10.7	DESIGN CHECK NO. 11—Design	
		and shear simultaneously	26		capacity for horizontal shear and	
		·			tension applied to anchor bolts	57
7	CAL	CULATION OF DESIGN ACTIONS .	27	44.550	1011 F.V.1.151 F.0	
_	DE0	OMMENDED DEGION MODEL			GN EXAMPLES	58
9		OMMENDED DESIGN MODEL—	00	11.1	Axial compression and shear—	
	SUM	MARY OF DESIGN CHECKS	28	44.0	Design Example No. 1	58
	RECOMMENDED DESIGN MODEL—			11.2	Axial compression or axial tension	
9	AXIAL COMPRESSON AND SHEAR		29		and shear—Design Example No. 2	2 62
	9.1 DESIGN CHECK NO. 1—Design		25	12 RFFF	ERENCES	
	0.1	capacity for bearing on concrete		12 11 1		67
		support	29	APPENI	DICES	
	9.2	DESIGN CHECK NO. 2—Design	_0	Α	Limcon software	69
		capacity of steel base plate	32	В	ASI Design Guide 13	
	9.3	DESIGN CHECK NO. 3—Design	- —		comment form	76
		capacity of weld at column base	34			

