5.5.3.4 R-Factor Design Method

The design procedure for purlins in Clause 3.3.3.4 of AS/NZS 4600 is based on the use of reduction factors (R-factors) to allow for the flexural-torsional or nonlinear distortional behaviour of purlins with screw-fastened sheeting. The R-factors have been based on tests performed on purlin-sheeting systems in Australia and described in Refs. 5.23, 5.24 and 5.26. The test program included simple spans, continuous lapped double spans, continuous lapped triple spans, all under wind uplift, and continuous lapped triple spans under simulated gravity loading. The purlins were tested with 0, 1 and 2 rows of bridging (bracing). The computation of the *R*-factors is given in Johnston and Hancock (Ref. 5.32).

The R-factor design method simply involves applying a reduction factor (*R*) to the bending section capacity ($Z_e f_y$) as given by Eq. (5.35) to give the nominal member moment capacity.

$$M_b = R Z_e f_y \tag{5.35}$$

The resulting design moment (($\phi_b M_b$) is compared with the maximum bending moment in the span determined from a simple elastic beam analysis. The capacity reduction factor (ϕ_b) for use with Eq. (5.35) is 0.90.

The reduction factors depend upon the loading and span type, and the direction of loading. They only apply for the range of sections, sheeting and screw fasteners tested as set out in Clause 3.3.3.4 of AS/NZS 4600. The *R*-factor design method is used for purlin sheeting systems with screw-fastened sheeting in lieu of Clause 3.3.3.2, Lateral Buckling.

5.6 Bracing

As described in Section 1.4.2, bracing of beams can be used to increase the flexural-torsional buckling load. In addition, non-doubly symmetric sections such as channel and Z-section purlins twist or deflect laterally under load as a consequence of the loading which is not located through the shear centre for channels or not in a principal plane for Z-sections. Consequently bracing can be used to minimise lateral and torsional deformations and to transmit forces and torques to supporting members. A photo of bolted bridging attached to a Z-section purlin with failure between the bridging points is shown in Fig. 5.17.

Fig. 5.17 Bridging bolted to purlin (failure under test between bridging points)

For channel- and Z-sections used as beams, two basic situations exist as specified in Clause 4.3.3 of AS/NZS 4600. These are when:

- (a) the top flange is connected to sheeting material in such a way that the sheeting effectively restrains lateral deflection of the connected flange as described in Clauses 4.3.3.2 Wind Uplift and 4.3.3.3 Gravity Load; and
- (b) neither flange is so connected and bracing members are used to support the member as described in Clause 4.3.3.4.

The means by which the forces which accumulate in the sheeting or bracing are transmitted to the supporting structure or are eliminated are described in Clause 4.3.3.2 of AS/NZS 4600. These methods have been summarised diagrammatically in Fig. 5.18 for which the four cases described are:

- (a) A system of bridging or bracing members sufficiently strong to carry the forces to a stiff support as shown in Fig. 5.18(a). The sheeting in this case does not need to be connected to the support or screw fastened along its laps to form a diaphragm.
- (b) Arrangement of alternating members to oppose each other as shown in Fig. 5.18(b) so that forces do not accumulate in the sheeting or bracing. This method is particularly useful when a perimeter support system is not available. If the sheeting is sufficiently well screw-fastened to the purlins, then the bridging between pairs of opposed members may be omitted, although this may reduce the capacity of the individual members as described in the previous section.
- (c) By a diaphragm with sufficient shear rigidity to transfer the forces to a stiff perimeter member as shown in Fig. 5.18(c). The perimeter member need not be connected to a rigid support if cleats are provided to prevent twisting of the members at the supports. In addition, lap fastening should be provided between the sheets to transmit shear forces through the sheeting.
- (d) By direct axial stress in the roof sheets or bridging which is opposed by a balancing set from another roof plane as shown in Fig. 5.18(d). Alternatively, bracing may be used in the same way without direct connection to a stiff support.

(d) Opposing and balancing purlins and sheeting

Fig. 5.18 Bracing systems

In the purlin tests with screw-fastened sheeting in the vacuum test rig described in Refs 5.23 and 5.24, it was found that side lap fasteners were sufficient to transfer membrane forces to cleats at the ends of the purlins, and the need for attachment of the bridging to stiff supports was not apparent during testing. Hence Clause 4.3.3.2 allows beam systems which satisfy the cleat and screw fastening requirements of Clause 3.3.3.4, Items (ix) to (xiv) to have bracing which is not connected to a stiff member but must be capable of preventing torsional deformation at the point of attachment. However purlins with concealed fastener sheeting still require bracing according to Clause 4.3.3.4.

Clause 4.3.3.3 of AS/NZS 4600 is taken directly from the AISI Specification. It applies to purlinsheeting systems without cleats for which the bracing system is the main resistance to lateral bending and rolling of the purlins.

The formulae for the design of braces specified in Clause 4.3.3.4 are based on an analysis of the torques and lateral forces induced in a channel- or Z-section respectively assuming that the braces completely resist these forces. For the simple case of a concentrated load acting along the line of the web of a channel as shown in Fig. 5.19(a), the brace connected to the channel must resist a torque equal to the concentrated force times its distance from the shear centre. For the case of a vertical force acting along the line of the web of a Z-section as shown in Fig. 5.19(b), the brace must resist the load tending to cause the section to deflect perpendicular to the web. For the restraint at the centroid, no twisting occurs provided that the load is concentric. However for restraint at the load point on the top flange, considerable twisting of the section occurs. Consequently, if the lateral brace is not located at the centroid, then a pair of braces should be used at the top and bottom flange. It is also prudent to ensure that a single brace at the centroid can resist torsional deformation of the Z-section to allow for any loading eccentricity.

Clause 4.3.3.4 also specifies how the bracing forces should be calculated when the loads are not located at the brace points or are uniformly distributed loads.

(b) Z-section forces

Fig. 5.19 Theoretical bracing forces at a point of concentrated load

Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney

fourth edition - 2007

CONTENTS

	F	Page
PREFACE	TO THE 4 th EDITION	viii
CHAPTER	1 INTRODUCTION	1
1.1 [1.1.1	Design Standards and Specifications for Cold-Formed Steel General	1 1
1.1.2	Specifications New Developments in the 2005 Edition	1 2
1.2 (Common Section Profiles and Applications of Cold-Formed Steel	4
1.3 N	Manufacturing Processes	10
1.4 § 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8 1.4.9	Special Problems in the Design of Cold-Formed Sections Local Buckling and Post-local Buckling of Thin Plate Elements Propensity for Twisting Distortional Buckling Cold Work of Forming Web Crippling under Bearing Connections Corrosion Protection Inelastic Reserve Capacity Fatigue	12 12 13 14 15 15 16 16
1.5 L	Loading Combinations	17
1.6 L	Limit States Design	17
1.7 (Computer Analysis	19
1.8 F	References	20
CHAPTER	2 MATERIALS AND COLD WORK OF FORMING	22
2.1 \$	Steel Standards	22
2.2	Typical Stress-Strain Curves	23
2.3	Ductility	25
2.4 E	Effects of Cold Work on Structural Steels	29
2.5 (Corner Properties of Cold-Formed Sections	30
2.6 F 2.6.1 2.6.2 2.6.3 2.6.4	Fracture Toughness Background Measurement of Critical Stress Intensity Factors Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens	32 32 32 34 35
2.7 F	References	36
CHAPTER	8 3 BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING	37
3.1 I	ntroduction to the Finite Strip Method	37
3.2 N 3.2.1 3.2.2 3.2.3	Monosymmetric Column Study Unlipped Channel Lipped Channel Lipped Channel (Fixed Ended)	38 38 41 44
3.3 F 3.3.1 3.3.2	Purlin Section Study Channel Section Z-Section	45 45 46

	3.4 3.4.7 3.4.2	Tubular Flange Sections 1 Hollow Flange Beam in Bending 2 LiteSteel Beam Section in Bending	47 47 48
	3.5	References	49
CI	HAPTE	R 4 STIFFENED AND UNSTIFFENED COMPRESSION ELEMENTS	50
	4.1	Local Buckling	50
	4.2	Postbuckling of Plate Elements in Compression	51
	4.3	Effective Width Formulae for Imperfect Elements in Pure Compression	52
	4.4 4.4.7 4.4.2	Effective Width Formulae for Imperfect Elements under Stress Gradient 1 Stiffened Elements 2 Unstiffened Elements	56 56 56
	4.5 4.5.2 4.5.2 4.5.3	 Effective Width Formulae for Elements with Stiffeners Edge Stiffened Elements Intermediate Stiffened Elements with One Intermediate Stiffener Edge Stiffened Elements with Intermediate Stiffeners, and Stiffened Elements with more than One Intermediate Stiffener 4 Uniformly Compressed Edge Stiffened Elements with Intermediate Stiffeners 	57 57 58 58 58
	4.6 4.6.7 4.6.2 4.6.3	Examples 1 Hat Section in Bending 2 Hat Section in Bending with Intermediate Stiffener in Compression Flange 3 C-Section Purlin in Bending	59 59 63 68
	4.7	References	75
CI	HAPTE	R 5 BEAMS, PURLINS AND BRACING	76
	5.1	General	76
	5.2 5.2.7 5.2.2 5.2.3	 Flexural-Torsional (Lateral) Buckling Elastic Buckling of Unbraced Simply Supported Beams Continuous Beams and Braced Simply Supported Beams Bending Strength Design Equations 	77 77 81 85
	5.3 5.3.7 5.3.2	Distortional Buckling 1 Flange Distortional Buckling 2 Lateral-Distortional Buckling	86 86 89
	5.4 5.4.1 5.4.2 5.4.3	Basic Behaviour of Purlins1Linear Response of Channel and Z-sections2Stability Considerations3Sheeting and Connection Types	89 89 92 94
	5.5 5.5.7 5.5.2 5.5.3	Design Methods for Purlins1No Lateral and Torsional Restraint Provided by the Sheeting2Lateral Restraint but No Torsional Restraint3Lateral and Torsional Restraint	95 95 95 96
	5.6	Bracing	98
	5.7 5.7.2 5.7.2	Inelastic Reserve Capacity11Sections with Flat Elements12Cylindrical Tubular Members1	01 01 02
	5.8 5.8. 5.8. 5.8. 5.8. 5.8.	Examples11Simply Supported C-Section Purlin12Distortional Buckling Stress for C-Section13Continuous Lapped Z-Section Purlin14Z-Section Purlin in Bending18References1	02 02 07 08 16
	5.5		~~

CHAPTE	R 6 WEBS	125
6.1	General	125
6.2	Webs in Shear	125
6.2. ⁻	1 Shear Buckling 2 Shear Yielding	125 127
6.3		127
6.4	Webs in Combined Bending and Shear	120
6.5		120
6.6	Web Crinnling (Bearing) of Open Sections	130
6.6. 6.6.	1 Edge Loading Alone 2 Combined Bending and Edge Loading	130 133
6.7	Webs with Holes	134
6.8	Examples	136
6.8.	1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section	Purlin
6.8.2	2 Combined Bearing and Bending of Hat Section	138
6.9	References	139
CHAPTE	R 7 COMPRESSION MEMBERS	141
7.1	General	141
7.2	Elastic Member Buckling	141
7.2. ⁻ 7.2.:	 Flexural, Torsional and Flexural-Torsional Buckling Distortional Buckling 	141 143
7.3	Section Capacity in Compression	143
7.4	Member Capacity in Compression	144
7.4. 7.4 :	1 Flexural, Torsional and Flexural-Torsional Buckling 2 Distortional Buckling	144 146
7.5	Effect of Local Buckling	147
7.5.	1 Monosymmetric Sections	147
7.5.2	2 High Strength Steel Box Sections	149
7.6	Examples	151 151
7.6.2	2 Unlipped Channel Column	153
7.6.3	3 Lipped Channel Column	157
7.7	References	164
CHAPTE	R 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING	165
8.1	Combined Axial Compressive Load and Bending - General	165
8.2	Interaction Equations for Combined Axial Compressive Load and Bending	166
8.3 8.3. 8.3.2	 Monosymmetric Sections under Combined Axial Compressive Load and Bending Sections Bent in a Plane of Symmetry Sections Bent about an Axis of Symmetry 	167 167 169
8.4	Combined Axial Tensile Load and Bending	170
8.5	Examples	171
8.5.	1 Unlipped Channel Section Beam-Column Bent in Plane of Symmetry	171
o.ə. 8.5.:	 Lipped Channel Section Beam-Column Bent about Plane of Symmetry Lipped Channel Section Beam-Column Bent in Plane of Symmetry 	174
8.6	References	180

v V

CHAPTER 9 CONNECTIONS	182
9.1 Introduction to Welded Connections	182
 9.2 Fusion Welds 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading 9.2.3 Fillet Welds subject to Longitudinal Loading 9.2.4 Combined Longitudinal and Transverse Fillet Welds 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds 	184 184 184 185 186 186 187 190
9.3 Resistance Welds	190
9.4 Introduction to Bolted Connections	190
 9.5 Design Formulae and Failure Modes for Bolted Connections 9.5.1 Tearout Failure of Sheet (Type I) 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) 9.5.4 Shear Failure of Bolt (Type IV) 	192 193 193 194 196
9.6 Screw Fasteners and Blind Rivets	196
9.7 Rupture	200
9.8 Examples 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example	201 201 205
9.9 References	208
CHAPTER 10 DIRECT STRENGTH METHOD	209
10.1 Introduction	209
10.2 Elastic Buckling Solutions	209
 10.3 Strength Design Curves 10.3.1 Local Buckling 10.3.2 Flange-distortional buckling 10.3.3 Overall buckling 	210 210 212 213
10.4 Direct Strength Equations	213
10.5 Examples 10.5.1 Lipped Channel Column (Direct Strength Method) 10.5.2 Simply Supported C-Section Beam	215 215 216
10.6 References	218
CHAPTER 11 STEEL STORAGE RACKING	219
11.1 Introduction	219
11.2 Loads	220
 11.3 Methods of Structural Analysis 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order 11.3.3 Beams 	221 222 223 223
 11.4 Effects of Perforations (Slots) 11.4.1 Section Modulus of Net Section 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) 	224 224 225 225
11.5 Member Design Rules11.5.1 Flexural Design Curves11.5.2 Column Design Curves	225 225 226

vi

11.5.3 Distortional Buckling	227
11.6 Example	227
11.7 References	235
SUBJECT INDEX BY SECTION	236

