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Abstract: 
The report derives the differential equations for the overall bifurcation of locally buckled 
point-symmetric columns. It is shown that flexural buckling about the minor and major 
principal axes are coupled in a locally buckled point-symmetric column whereas the buckling 
modes are uncoupled in a non-locally buckled column. The governing equations are solved 
for simply supported and fixed-ended columns and applied to Z-sections. Overall bifurcation 
curves are obtained for five Z-sections with increasingly slender flanges. It is shown that 
local buckling reduces the elastic torsional buckling load more so than the flexural buckling 
load for Z-sections, and that local buckling can cause a mode switch from the flexural to the 
torsional mode in Z-sections with very slender flanges. 
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1 Introduction  
 
Thin-walled sections may suffer local buckling prior to overall collapse. In this case, it is 
important to know the influence of local buckling on the overall behaviour. Bifurcation 
analyses are particularly suited to study this influence and may be used to characterise the 
overall bifurcation behaviour for different types of cross-section.  
 
The primary effect of local buckling is to reduce the member stiffnesses to overall flexure 
and torsion. Consequently, the overall bifurcation load can be calculated by using the 
stiffnesses of the locally buckled cross-section rather than the stiffness of the undistorted 
cross-section. This result has been used widely [1, 2] to determine the flexural buckling of 
locally buckled doubly symmetric columns. In this particular case, the buckling load can be 
obtained simply by replacing the flexural rigidity (EI) of the unbuckled section by the 
tangent, or effective, flexural rigidity of the locally buckled section in the Euler formula. 
 
A general theory for calculating overall bifurcation loads (or buckling loads) of locally 
buckled members was presented in Ref [3]. The theory accounts for biaxial bending and 
torsion. It was applied to singly symmetric channel sections in compression by Young and 
Rasmussen [4, 5], and to doubly symmetric I-sections in compression and bending by 
Rasmussen and Hasham [6]. In the present paper, the theory is applied to point-symmetric 
sections in uniform compression. The buckling equations are first summarised and then used 
to calculate buckling curves for five different Z-sections with varying flange slenderness. 
 
 
2 Buckling Equations  
 
2.1 Model of the locally buckled member  
 
The analytical model applies to cross-sections composed of thin plates. The component plates 
are assumed to buckle locally before overall buckling, such that plate deflections at junctions 
are negligible. This implies that the locally buckled state of the component plates can be 
described by the von Karman plate equations. Examples of the local buckling modes of point 
symmetric cross-sections in uniform compression are shown in Fig. 1. 
 
By recognising that the effect of local buckling on the overall buckling behaviour is to reduce 
the stiffness of the member, a simple model can be devised by assuming that the locally 
buckled cross-section consists of an assembly of narrow strips, whose tangent stiffnesses (Et) 
vary around the cross-section as a function of the extent of local buckling. The modeling 
allows the effect of local buckling, which cause a geometrical loss of stiffness to be 
considered as a material effect in the overall bifurcation analysis, in so far that the effect is to 
change the initial stiffness (E). Consequently, it allows the theory for the buckling of thin-
walled members, with an undistorted cross-section, to be used by changing only the stress-
strain relations [3]. Furthermore, the effect of yielding can be taken into account when 
calculating the stiffness of the various points in the cross-section. 
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The governing equations derived in [3] are expressed in terms of the generalised 
displacements (u, v, w, φ), which are assumed to refer to the shear centre of the undistorted 
cross-section. The formulation uses a set of tangent rigidities, defined as 
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where (x,y) are principal coordinates, and the tangent rigidity against shear (Gt) may be 
assumed to be equal to the full shear modulus G [7]. The tangent moduli, φ ′′′′′′′

t
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u
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t EEEE ,,, , 

are the stiffnesses against axial straining ( w′ ), bending in the (x,z)-plane (u ′′ ), bending in the 
(y,z)-plane ( v ′′ ) and twisting (φ ′′ ) respectively, such that the incremental longitudinal stress is 
given by, 
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2.2 General bifurcation equation  
 
As derived in [3], the general variational equation of incremental equilibrium of the 
fundamental state is given by, 
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where δ( ) denotes a virtual quantity, 0000 ,,, φ&&&& vuw  are increments of fundamental state 
displacements, BMMN yx ,,,  are applied reference stress resultants, defined by 
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∫= A z dAqN                 (14) 
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∫= A z dAqB ω                 (17) 

 
in which qz is a longitudinal reference stress applied at the ends, and λ&  is the incremental 
load factor, such that the total applied stress resultants are BMMN yx λλλλ ,,, . 
 
The incremental internal stress resultants of the fundamental state are defined as  
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where 0σ&  is the incremental longitudinal fundamental state stress. 
 
The general variational equation of bifurcation is given by [3], 
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where bbbb vuw φ,,,  are the buckling displacements, 
00

,,0 yx MMN  are the fundamental state 
stress resultants, (xS, yS) are the shear centre coordinates, λc is the critical load factor, and 0W  
is the Wagner stress resultant defined as, 
 

WW λ−=0                (23) 
where 

./)( 22
0 λσ∫ +−=

A
dAyxW              (24) 

 
 
2.3 Point symmetric cross-sections in compression  
 
2.3.1 Fundamental state  
 
The (x,y)-axes are assumed to be principal, as shown in Fig. 1, and the sectorial coordinate 
(ω) is assumed to be normalized and referring to the shear centre. It then follows from the 
point symmetry that ω is an even function of x and y,   
 

).,(),( yxyx −−= ωω               (25) 
 
Since the local buckling deformations of a point symmetric cross-section are symmetric in 
magnitude with respect to the point of symmetry, the tangential stiffnesses ( φ ′′′′′′′
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are even functions of x and y,   
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Using eqns (25, 26), it follows from eqns (2, 3, 9, 10) that 
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so that the incremental equilibrium equation (13) becomes, 
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By expanding and integrating this equation by parts, the following differential equations and 
boundary conditions are obtained, 
 
Differential equations: 
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Boundary conditions: 
The boundary conditions are listed in Table 1 as derived from the variations equation (28). In 
the table, the upper and lower stacked signs (±  or m ) refer to z=0 and z=L, respectively. 
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Table 1:  Boundary conditions for the fundamental state. Columns with point symmetric thin-
walled cross-sections. 
 
It follows from eqns (29-39) that w0 and φ0 are coupled and that u0 and v0 are coupled in the 
fundamental state, while there is no coupling between (w0, φ0) and (u0, v0). 
 
 
Simply supported and fixed ended columns 
The geometric boundary conditions and applied actions for simply supported and fixed-ended 
columns are shown in Figs 2 and 3 respectively. Combined with Table 1, they provide the 
boundary conditions for the fundamental state. Note that warping is assumed to be 
restrained ( 00 =′φ ) at the ends for both the simply supported and fixed-ended cases. 
 
As will be shown in the following, the tangent rigidities can be assumed to be constant along 
the length for any given axial load in the fundamental state. By differentiating and combining 
eqns (29-32) under this assumption, the following equations are obtained, 
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These equations are readily solved for 0000 ,,, φ&&&& vuw  and combined with eqns (33a&b,34a, 
35b,36a,37b,38a,39a) for simply supported columns and eqns (33a&b,34a,35a,36a,37a,38a, 
39a) for fixed-ended columns. In either case, the equations lead to  
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This result shows that the axial straining is uniform along the length and hence confirms the 
assumption that the tangent rigidities are constant. 
 
Using eqns (1-12), (18-20), (27), the incremental stress resultants are obtained as, 
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It follows that the stress resultants for simply supported and fixed-ended columns are: 
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This result demonstrates that a bimoment develops in the fundamental state of an axially 
loaded locally buckled point symmetric column. 
 
 
2.3.2 Bifurcated state  
By using eqn. (27) and the stress resultants given by eqns (50-53), the bifurcation 
equation (22) for axially loaded simply supported and fixed-ended point symmetric columns 
becomes, 
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By expanding and integrating by parts, the following differential equations and boundary 
conditions are obtained, 
 
Differential equations: 
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Boundary conditions: 
The boundary conditions are listed in Table 2 as derived from the variation equation (54).  
 
Geometric 
quantity restrained 

or                Geometric quantity unrestrained Eqn 

        0=bw                    ( ) ( ) 0)()( =′′−′ btbt ESwEA φω  (59a,b)
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       0=bφ                    ( ) ( ) 0)()()( =′−′+′′′−′′ bcbtbtbt WGJEIwES φλφφωω  (64a,b)

       0=′bφ                 ( ) ( ) 0)()( =′′+′− btbt EIwES φωω  (65a,b)
m,±   upper sign refers to z=0, lower to z=L 

 
Table 2:  Boundary conditions for the bifurcated state. Simply supported and fixed-ended 
columns with point symmetric thin-walled cross-section. 
 
It follows from eqns (55-65) that the flexural buckling displacements (ub, vb) are coupled 
when the section is locally buckled. The coupling arises because of the term (EIxy)t which 
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increases gradually as local buckling develops. The term is zero for non-locally buckled 
sections and accordingly, the minor and major axis flexural buckling modes are uncoupled 
for non-locally buckled columns. From a physical viewpoint, the coupling between ub and vb 
in a locally buckled section means that overall flexural buckling occurs about an axis which 
is rotated from the minor principal axis. The axis of flexure changes because the stiffness of 
the section changes non-uniformly within the cross-section. Torsional buckling involves (wb, 
ϕb) and is uncoupled from flexural buckling.  
 
The differential equations (55-58) and boundary conditions (59-65) for simply supported and 
fixed-ended columns can be satisfied by the following displacement fields: 
Simply supported columns: 
 

⎟
⎠
⎞

⎜
⎝
⎛==

L
z

C
v

C
u

v

b

u

b πsin                (66) 

⎟
⎠
⎞

⎜
⎝
⎛=

L
z

C
w

w

b π2sin                (67) 

.2cos1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

L
z

C
b πφ

φ

              (68) 

 
Fixed-ended columns: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−===

L
z

CC
v

C
u b

v

b

u

b πφ

φ

2cos1              (69) 

.2sin ⎟
⎠
⎞

⎜
⎝
⎛=

L
z

C
w

w

b π                (70) 

 
By substituting these equations into the differential equations (55-58) and requiring non-
trivial solutions, the following determinant equation is obtained, 
 

0

)()(00

)()(00

00)()(2)(2

00)(2)(

22

22

2

=

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

−+⎟
⎠
⎞

⎜
⎝
⎛−

−

NEI
L

kEI
L

k

EI
L

kNEI
L

k

WGJEI
L

ES
L

ES
L

EA

ctxtxy

txycty

cttt

tt

λππ

πλπ

λππ

π

ωω

ω

               (71) 
 
where k=1 for simply supported columns and k=2 for fixed-ended columns. The first two 
rows of eqn. (71) pertain to the longitudinal displacement (wb) and twist rotation (φb), while 
the latter two rows pertain to the flexural displacements (ub,vb). The critical load factors for 
flexural buckling (

uvcλ ) and torsional buckling (
φ

λc ) are readily obtained from eqn. (71),  
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( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ −−+±+⎟

⎠
⎞

⎜
⎝
⎛=

2
1

22
2

)()()(4)()()()(
2
1

txytytxtytxtytxc EIEIEIEIEIEIEI
L

k
Nuv

πλ   

(72) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=

t

t
ttc EA

ES
L

GJEI
LW )(

)(2)()(21 222

ω
ω

ππλ
φ

               (73) 

 
The critical loads are to be obtained as, 
 

NN
uvuv cc λ=           (74) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛==

t

t
ttcc EA

ES
L

GJEI
LW

NNN
)(
)(2)()(2 222

ω
ω

ππλ
φφ

    (75) 

 
where W  is given by eqn. (24).  
 
 
3 Tangent rigidities  
 
3.1 Computational procedure  
 
As discussed in detail in [2-4], the tangent rigidities defined by eqns (1-10) can be obtained 
from a non-linear post-local buckling analysis by subjecting a single local buckle to 
increasing levels of axial compression and at each compression level, superimposing onto the 
locally buckled state a small increment of generalised strain ( φ ′′∆−′′∆−′′∆−′∆ ,,, vuw ). The 
numerical process requires the internal stress resultants ( BMMN yx ∆∆∆∆ ,,, ) be calculated 
for each superimposed increment of generalised strain. The tangent rigidities are then the 
ratios of internal stress resultant to generalised strain. For instance, 
 

w
N

w
NEA t ′∆

∆
≅

′∂
∂

=)(                (76) 

w
B

w
BES t ′∆

∆
≅

′∂
∂

=)( ω                (77) 

v
M

v
M

EI xx
tx ′′∆−

∆
≅

′′∂−
∂

=)(               (78) 

v
M

v
M

EI yy
txy ′′∆−

∆
≅

′′∂−

∂
=)(  or ,)(

u
M

u
M

EI xx
txy ′′∆−

∆
≅

′′∂−
∂

=  etc.        (79) 

 
The generalised strains ( φ ′′∆−′′∆−′′∆−′∆ ,,, vuw ) are superimposed by applying small 
uniform displacements, rotational displacements or warping displacements onto the current 
locally buckled state. For instance, the curvature )( u ′′∆−  is introduced by applying equal and 
opposite rotations u′∆( ) and the two ends of a local buckle of length l, so that, 

l
uu
′∆

−=′′∆−
2             (80) 

 
The post-local buckling analysis may typically be carried out using a non-linear elastic finite 
strip analysis [8] or an inelastic nonlinear finite strip analysis [9]. 
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3.2 Invariants  
The principal axes of point symmetric sections, such as plain or lipped Z-sections, are usually 
rotated relative to the parallel axes defined by the component plates. In this case, it becomes 
cumbersome to calculate the displacements arising from the superimposed 
rotations vu ′∆′∆ ,( ) about the principal axes,  
 

xuwu ′∆=′′             (80) 
yvwv ′∆−=′′             (81) 

 
However, as will be show in the following, in calculating the flexural buckling load 

uvcN( ), 
the underlined terms ( )tytx EIEI )()( +  and ( )2)()()( txytytx EIEIEI −  of eqn. (72) are invariant 
to the choice of coordinate system. Consequently, the tangent moduli terms ((EIx)t, (EIxy)t, 
etc) can be calculated with reference to a convenient orthogonal yx,( )-system aligned with 
the component plates of the cross-section, such as the web and flanges of a Z-section.  
 
The existence of invariants can be proved on the basis of the reciprocal theorem. We consider 
first the displacements arising from rotations about the principal (x,y) axes, as given by 
eqns (80,81), and the associated longitudinal stresses, 
 

x
l
uEu

t
u ′∆
= ′′′′ 2σ            (82) 

y
l
vE v

t
v ′∆

−= ′′′′ 2σ            (83) 

 
as shown in Fig. 4c. The stresses vu ′′′′ σσ ,( ) are those which develop in addition to the post-
local buckling stresses present in the fundamental state, which are shown in Fig. 4a.  
 
The corresponding displacements and stresses for superimposed rotations vu ′∆′∆ ,( ) about 
the orthogonal axes are: 

xuwu ′∆=′′             (84) 
yvwv ′∆−=′′             (85) 

x
l
uEu

t
u ′∆
= ′′′′ 2σ            (86) 

y
l
vE v

t
v ′∆

−= ′′′′ 2σ            (87) 

 
as shown in Fig. 4b. The following equalities follow from the reciprocal theorem, 
 

∫∫ ′′′′′′′′ =
A

uu

A

uu dAwdAw σσ            (88) 

∫∫ ′′′′′′′′ =
A

vv

A

vv dAwdAw σσ            (89) 

∫∫ ′′′′′′′′ =
A

uv

A

vu dAwdAw σσ            (90) 

 
By substituting eqns (80-87) into this equation and using the transformation, 
 

αα sincos yxx +=            (92) 
αα cossin yxy +−=           (93) 
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where α is the rotation between the two coordinate systems (Fig. 4c), the following equations 
result, 
 

txytxtyxtx EIEIEIEI )(sin)(cos)(sin)(cos αααα +=−          (94) 

txytytyxty EIEIEIEI )(sin)(cos)(sin)(cos αααα −=+          (95) 

txytxtyxty EIEIEIEI )(cos)(sin)(cos)(sin αααα +−=+−             (96) 
 
where tyxtytx EIEIEI )(,)(,)(  are defined as, 
 

∫ ′′=
A

v
ttx dAyEEI 2)(             (97) 

∫ ′′=
A

u
tty dAxEEI 2)(             (98) 

.)( ∫∫ ′′′′ ==
A

v
tA

u
ttyx dAyxEdAyxEEI           (99) 

 
Solving eqns (94-96) for the tangent rigidities ( txytytx EIEIEI )(,)(,)( ), the following results 
can be shown: 
 

tytxtytx EIEIEIEI )()()()( +=+            (100) 
22 )()()()()()( tyxtytxtxytytx EIEIEIEIEIEI −=−          (101) 

 
which prove that the terms of eqn. (72) are invariant to the choice of coordinate system. 
 
 
4 Buckling Curves for Fixed-ended Z-section Columns  
 
Five cross-sections were selected for studying the bifurcation behaviour of thin-walled Z-
section columns. All sections had the same thickness (1.5 mm) and web depth (100 mm). 
Different flange widths were used to produce ratios (σl,f /σl,w) of local buckling stress of the 
flanges to local buckling stress of the web of 0.25, 0.5, 1, 2 and 4. These ratios were 
calculated using local buckling coefficients (k) of 0.425 and 4 for the flanges and web 
respectively. The cross-sections are detailed in Fig. 5 together with the local buckling stress 
(σl) and half-wavelength (l) for each cross-section, as determined from a rational elastic 
buckling analysis treating the section as a plate assemblage [9]. The figure also shows the 
orientation of the principal (x,y)-axes for each cross-section. 
 
Local buckling of the 16.3- and 23.0-sections was triggered by instability of the web and so 
the stress redistribution developing in the post-local buckling range occurred mainly in the 
web. For the 32.6-section, the web and flanges were affected by local buckling to comparable 
degrees, whereas for the 46.1- and 65.2-sections, local buckling and the stress redistribution 
developing in the post-local buckling range occurred mainly in the flanges. 

 
The overall buckling loads were obtained according to classical theory (assuming elastic 
behaviour and no cross-sectional distortion), elastic theory (allowing cross-sectional 
distortion, ie local buckling) and inelastic theory (allowing cross-sectional distortion and 
yielding). In the inelastic analyses, the material was assumed to be linear-perfectly-plastic 
with yield stress values of 1, 2 and 3 times the elastic local buckling stress. For instance, for 
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the 16.3-section, the local buckling stress was 181.2 MPa, as shown in Fig. 5, and so the yield 
stress (σy) was taken as 181.2 MPa, 362.4 MPa and 543.6 MPa.  
 
In the elastic and inelastic analyses, the tangent rigidities ((EA)t, (ESω)t, (EIy)t, (EIy)t, (EIω)t, 
(EIxy)t) were obtained from a nonlinear finite strip analysis[8] of a length of section equal to 
the local buckle half-wavelength (l), In the analyses, the magnitude of the geometric 
imperfection of the local buckling mode was assumed to be 2 % of the plate thickness. The 
tangent torsional rigidity (GJ)t was taken as the full torsional rigidity (GJ) in all calculations. 
 
Having determined the resultants (λN , λW ) and tangent rigidities ((EA)t, (ESω)t, (EIy)t, (EIx)t, 
(EIω)t, (EIxy)t, (GJ)t) for increasing levels of axial compression, these values were substituted 
into eqns (72-75) which were then solved for the length (L). The resulting graphs of overall 
buckling load vs length are shown in Figs 6-10, where the overall buckling load (Ncr) is 
nondimensionalised with respect to the elastic local buckling load (Nl). The columns were 
assumed to be fixed-ended, and hence the value of k=2 was assumed in using eqn. (72). 
 
It appears from Figs 6-10 that the elastic overall buckling loads of the locally buckled 
sections are strongly dependent on the slenderness of the flanges; except for the flexural 
buckling curve of the 16.3-section which is nearly same as the elastic flexural buckling curve 
for the undistorted cross-section, see Fig. 6. The latter result is explained with reference to the 
relatively stocky flanges of the 16.3-section, which ensure similar stress distributions in the 
flanges of the distorted and undistorted cross-sections at all levels of compression. Since the 
principal (x,y)-axes of the 16.3-section are nearly aligned with the flanges and web, as shown 
in Fig. 5a, the minor axis flexural tangent rigidity (EIy)t=∆My/-∆u'' is nearly the same as the 
full flexural rigidity EIy of the undistorted cross-section. The buckling load is primarily 
dependent on the term (EIy)t and so is nearly the same for the distorted and undistorted 16.3-
sections. 
 
The elastic torsional buckling load of the 16.3-section is reduced by local buckling because 
the sectorial coordinate (ω) is non-zero in the web and hence, the post-local buckling stress 
redistribution in the web leads to a reduction in the tangent warping rigidity (EIω)t=∆B/-
∆ϕ''=∫Aω ∆σ dA/-∆ϕ'', where ∆B is the change in bimoment. 
 
Local buckling decreases the elastic torsional buckling load for all cross-sections and 
increasingly so with increasing slenderness of the flanges. For the 65.2-section, the critical 
mode becomes the torsional mode in the column length range from 3100 mm to 4100 mm, 
while it is the flexural mode for the undistorted case, as shown in Fig. 10. 
 
In Figs 6-10, the inelastic overall bifurcation curves are terminated at short lengths at the 
maximum load obtained in the inelastic finite strip local buckling analysis. Thus, the 
maximum loads shown represent theoretical estimates of the axial section capacity. 
 
The inelastic buckling curves branch off the elastic buckling curves for the distorted cross-
sections at the point of first yield. The inelastic buckling load is nearly unchanged after this 
point when the yield stress (σy) equals the local buckling stress (σl), while, on average, the 
maximum load at short length is 38% and 82% higher than the elastic local buckling load for 
σy/σl equal to 2 and 3 respectively. The increase depends on the cross-section and is smallest 
for the 32.6-section for which the local buckling stresses of the flanges and web are equal.  
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5 Conclusions 
 
A theoretical study of locally buckled point symmetric columns compressed between simply 
supported and fixed ends has been presented, including the derivation of the governing 
equations for the fundamental and bifurcated states. On the basis of the governing equations, 
it is shown that the direction of overall flexural buckling changes when the section locally 
buckles because of coupling between the minor and major flexural displacements. This 
coupling does not occur according to classical theory where the critical flexural mode is by 
bending about the minor axis. However, as in classical theory, there is no coupling between 
the flexural and torsional buckling modes for the locally buckled section. 
 
Equations for the buckling load of point symmetric simply supported and fixed-ended 
columns are derived and applied to Z-sections. The results show that the torsional buckling 
load is more reduced by local buckling than the flexural buckling load. This is attributed to 
the effect of local buckling of the web which leads to greater reductions in the tangent 
warping rigidity compared to tangent minor axis flexural rigidity. For a Z-section with very 
slender flanges, this effect can trigger a switch in critical overall buckling mode from the 
flexural to the torsional mode. 
 
The inelastic analyses showed that yielding does not lead to changes in the critical overall 
buckling mode for the sections investigated. 
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Figures 
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Fig 1:  Local buckling of point symmetric sections in compression 
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Fig 2:  Boundary conditions for simply supported column in compression 
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Fig 3:  Boundary conditions for fixed-ended column in compression 
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Fig 4:  Displacements and stresses arising from rotations about principal and orthogonal axes. 
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Fig 5:  Cross-sections  
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Fig. 6:  Buckling curves for 16.3-section 
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Fig. 7:  Buckling curves for 23.0-section 
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Fig. 8:  Buckling curves for 32.6-section 
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Fig. 9:  Buckling curves for 41.6-section 
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Figure 10.  Buckling curves for 65.2-section 
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