8.5 Biaxial Bending in the absence of axial force

In this section:

φ = 0.9 (Table 3.4 of AS 4100)

 M_x^* = design bending moment about the major principal x-axis

 ϕM_{sx} $\;$ = design section moment capacity for bending about the major principal x-axis

 M_v^* = design bending moment about the minor principal y-axis

 ϕM_{sy} = design section moment capacity for bending about the minor principal y-axis

For a member subject to biaxial bending without any axial force, the following conditions defined in Sections 8.5.1 and 8.5.2 must be satisfied.

8.5.1 Section Capacity

The following equation must be satisfied at all points along the member:

$$\frac{M_x^*}{\phi M_{sx}} + \frac{M_y^*}{\phi M_{sy}} \le 1$$
 (Clause 8.3.4 of AS 4100)

Alternatively, for doubly symmetric I-sections, which are compact about both the x- and y-axes, sections at all points along the member shall satisfy:

$$\left(\frac{M_x^*}{\phi M_{sx}}\right)^{1.4} + \left(\frac{M_y^*}{\phi M_{sy}}\right)^{1.4} \le 1$$
 (Clause 8.3.4 of AS 4100)

8.5.2 Member Capacity

$$\left(\frac{M_x^*}{\phi M_{bx}}\right)^{1.4} + \left(\frac{M_y^*}{\phi M_{sy}}\right)^{1.4} \le 1$$
 (Clause 8.4.5 of AS 4100)

where ϕM_{bx} = design member moment capacity for bending about the major principal x-axis for a laterally unsupported member

8.5.3 Tables

Tables 8.1-1 to 8.1-12 list ϕM_{sx} and ϕM_{sy} . The 8.1 series tables also provide references to other tables – e.g. Part 5 to evaluate ϕM_{bx} .