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ABSTRACT 
 
The report presents a study of the capacities of steel rack frames based on linear analysis (LA), geometric 
nonlinear analysis (GNA) and geometric and material nonlinear analysis (GMNIA). In the case of linear and 
geometric nonlinear analyses, the design is carried out to the Australian cold-formed steel structures 
AS/NZS4600. The study includes braced, unbraced and semi-braced frames, and compact and non-compact 
cross-sections. The report shows axial force and bending moment paths for geometric and geometric and 
material nonlinear analyses, and explains the differences observed in the design capacities obtained using the 
different types of analysis on the basis of these paths. The report provides evidence to support the use of 
advanced geometric and material nonlinear analysis for the direct design of steel rack frames without the 
need for checking section or member capacities to a structural design standard.  
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INTRODUCTION  
 
Current specifications for steel structures [1-3] allow the design to be based on “advanced” geometric and 
material nonlinear analysis. In the Australian Standard AS4100 [1], inelastic second order effects may be 
determined by advanced analysis, requiring only the cross-section and connection capacities to be 
determined according to the Standard. In Eurocode3, Part 1.1 [3], and the American Specification (AISC-
LRFD) [2], a similar approach is permitted except that the member interaction strength equations for 
combined actions are required to be used even when the internal stress resultants are determined from 
advanced geometric and material nonlinear analyses. In all cases, the cross-section must be compact and 
members must be fully braced against torsion and lateral buckling. 
 
When first published in 1990, the Australian Standard (AS4100) included provisions for geometric nonlinear 
elastic analysis (often termed “2nd order” analysis) as well as geometric and material nonlinear analysis. 
Commercial software featuring 2nd order analysis was developed soon after and has been employed 
increasingly in design offices as the basis for structural design over the last 20 years, thus obviating the need 
for amplification of moments determined by linear-elastic small-displacement (“1st order”) analysis. It is now 
common practice in Australia to use geometric nonlinear analysis for design. However, mainstream 
commercial structural analysis software packages have not included geometric and material nonlinear 
analysis, partly because of (i) the greater complexity of specifying material properties in such analyses and (ii) 
the requirement to include geometric imperfections and residual stresses, which are generally not defined in 
structural design standards, and partly because national design standards still require the section or member 
capacity to be checked, thus effectively negating efficiencies to be gained by using geometric and material 
nonlinear analysis for direct structural design. In effect, the only benefit to be gained from employing 
geometric and material nonlinear analysis over geometric nonlinear analysis is that the obtained internal 
stress resultants are more rationally based. Interestingly however, the recently released Version 2.4.1 of the 
widely industry-used Australian software package Strand7 [4] includes the capability to analyse structural 
frames by geometric and material nonlinear analysis as per the method described in Clarke and al. [5]. This 
capability will stimulate design engineers’ interest in using this type of analysis in design, particularly if (i) the 
design is allowed to be based directly on the nonlinear analysis without an imposed recourse to interaction 
equations in national standards and (ii) the current scope of geometric and material nonlinear analyses is 
broadened to include slender cross-sections and non-fully braced members failing by flexure and torsion.  
 
While geometric and material nonlinear analysis has not yet been generally embraced in design practice, 
research institutions have used advanced analysis finite element packages like Abaqus, Ansys, Nastran, Marc 
and Lusas for several decades and it is now well established that the behaviour of structural steel frames can 
be very accurately predicted using advanced analysis, provided all features affecting the behaviour are 
included in the analysis, notably geometric and material nonlinearities as well as imperfections. The literature 
features a wealth of articles demonstrating that the structural behaviour of members and systems subject to 
complex buckling modes, (e.g. local, distortional, flexural and flexural-torsional modes) and/or complex 
material characteristics can be modelled accurately using advanced finite element software.  
 
In view of these advances, when Standards Australia initiated a review of the Australian Standard for Steel 
Storage Racks, AS4084:1993 [6], the Standards committee charged with the review decided to include 
provisions for designing steel storage racks by advanced analysis. This required an articulation of the features 
required to be modelled in using geometric and material nonlinear analysis, notably guidance on which 
imperfections to include and their magnitudes. The draft Standard [7] acknowledges that the analysis may be 
based on shell element analysis in order to appropriately model the effects of local and distortional buckling 
and includes provisions for this type of analysis. It also allows for flexural-torsion buckling of the structural 
members. The main features of the advances made in the new draft Standard [7] are detailed in [8]. 
 
The main objective of this report is to investigate the consistency of using different types of analysis as basis 
for structural design. Hence, case studies are presented for the design of steel storage racks based on linear-
elastic, geometric nonlinear and geometric and material nonlinear analyses. Three different bracing 
configurations and two distinct cross-sections are considered, including a non-compact section which is 
subject to distortion of the cross-section in the ultimate limit state. Failure modes involving flexural and 
flexural-torsional buckling are investigated. To reduce the number of parameters, perforations are not included 
in this study and the frames are assumed to be braced in one direction so as to limit displacements to occur in 
a single plane, with or without torsion of uprights. 
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METHODS AND SCOPE OF ANALYSIS 
 
The draft Standard [7] includes provisions for design to be carried out on the basis of the following types of 
analysis: 
 

• LA Linear (“1st order”) Analysis assuming elastic material and small displacements. 
• GNA Geometric Nonlinear (“2nd order”) Analysis assuming large displacements. 
• LBA Linear Buckling Analysis assuming linear fundamental path. 
• GMNIA Geometric and Material Nonlinear (“advanced”) Analysis with Imperfections assuming 

large displacements and inelastic material properties. 
 
A linear buckling analysis (LBA) may be required when using LA analysis to determine moment amplification 
factors. The draft Standard distinguishes between two types of GMNIA analysis, namely analyses of frames 
with compact cross-section (GMNIAc), which may be premised on beam elements, and analyses of frames 
with non-compact cross-section (GMNIAs) which require shell or plate element discretisation to capture the 
effects of local and distortional buckling deformations.  
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Figure 1:  Frame imperfection, (n is the number of bays), (a) Typical unbraced rack showing initial out-of 
plumb (ϕi) (b) Equivalent loading system for the unbraced rack 

 

 
Figure 2:  Member imperfection 

 
Particular attention is paid to the modeling of geometric imperfections in the draft Standard. Irrespective of the 
type of analysis, out-of-plumb (“frame”) imperfections are modeled by means of equivalent notional horizontal 
forces, see Fig. 1. In LA, GNA and LBA analyses, this is the only type of imperfection modeled. It is implicit 
that the effects of out-of-straightness of members between connection points (“member” imperfections) and 
out-of-flatness of component plates of cross-sections (“section” imperfections) are considered by using 
member (column and beam) strength curves and plate/section (e.g. effective width) strength curves of 
structural design standards, respectively. In using GMNIAc and GMNIAs analyses, member imperfections 
must be modeled which can be achieved by (i) superimposing a scaled buckling mode of an equivalent frame 
with all beam levels restrained horizontally, (ii) reducing the flexural rigidity to 80% of its elastic value or (iii) 
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off-setting nodes of uprights by an amplitude of L/1000, as shown in Fig. 2. In using GMNIAs analysis, local 
and distortional geometric imperfections are also required to be modeled (Fig. 3), e.g. by superimposing 
scaled local and distortional buckling modes onto the flat section geometry.  
 

 
Figure 3:  Section imperfection 

 
The draft Standard requires residual stresses to be modeled in GMNIA analyses when significant. The 
sections considered in this study are assumed to be cold-formed and to have negligible levels of residual 
stress. Accordingly, residual stresses are not considered. 
 
The draft Standard allows LBA and GNA analyses to be carried out considering or not considering torsion. In 
this study, torsion has not been included in LA, LBA and GNA analyses and consequently, the amplification of 
bending moments in GNA analyses is caused solely by instability related to flexural displacements. As 
mentioned in the Introduction, displacements are assumed to occur solely in the down-aisle direction. 
 
The GMNIAc analyses are conducted for the distinct cases of torsion and no torsion of the uprights. The 
GMNIAs analysis based on shell element discretisation allows torsional deformations to develop. However, 
the cross-aisle displacement of the uprights is fully restrained, as shown in Fig. 4. 
 

 
Figure 4:  Cross-aisle restraint of uprights 

 
CASE STUDIES 
 
STEEL STORAGE FRAMES 
 
The rack frames considered in this study have the same common overall geometry, consisting of five 3.4 m 
wide bays and six beam levels equally spaced 2 m apart, as shown in Fig. 5. The frames may be unbraced, 
fully braced or semi-braced, as also shown in Fig. 5. In the semi-braced configuration, the third and upper 
beam levels are essentially restrained horizontally. Two cross-sections are considered for the uprights, 
namely a 100×100×6 mm box section and a rear-flange stiffened rack section with a web width of 110 mm 
and a thickness of 1.5 mm, referred to as RF11015, as shown in Fig. 5. In all analyses, the pallet beams and 
diagonal bracing are assumed to be compact 60×60×4 mm SHS and compact 30×2 mm CHS, respectively. 
 

Table 1:  Geometric properties of upright cross-sections 
Property Section 

 100×100×6 SHS RF11015 
A (mm2) 2256 508 
Iy (mm4) 3.33×106 4.46×105 
J (mm4) 5.00×106 381 
Iw (mm6) - 1.30×109 
x0 (mm) 0 0 
y0 (mm) 0 -67.5 
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The section constants of the two upright cross-sections are shown in Table 1, where A is the area, Iy the 
second moment of area about the y-axis, which is the symmetry axis aligned with the cross-aisle direction, J 
the torsion constant, Iw the warping constant and (x0,y0) the shear centre coordinates. 
 

 
Figure 5:  Rack configurations and upright cross-sections  

 
At the base, the uprights are assumed to be simply supported against flexure in the down-aisle direction while 
prevented against warping. The frame is assumed to be braced against displacements in the transverse 
(cross-aisle) direction. In the LA, GNA and GMNIAc analyses, the connections between the uprights and 
pallet beams are assumed to be rigid. The connection between uprights and pallet beams in the GMNIAs 
analyses is explained in the subsequent section. 
 
All uprights are assumed to have a yield stress (fy) of 450 MPa, while all pallet beams and diagonal bracing 
members are assumed to remain elastic. The engineering stress-strain curve for the uprights is assumed to 
be linear perfectly-plastic in the GMNIA analyses, thus ignoring the effects of strain hardening. 
 
Analysis models and results 
 
The finite element analyses were carried out using the commercial packages Strand7 [4] and Abaqus [9], as 
summarised in Table 2.  
 

Table 2:  Analysis types and software 
Analysis Torsion of uprights Software 

LA, LBA, GNA No Strand7 
GMNIAc No Strand7 
GMNIAc Yes Abaqus 
GMNIAs Yes Strand7 

 
In the GMNIAc analyses which consider torsion of the uprights, both uniform (St Venant) torsion and warping 
torsion are included. The failure modes in these analyses are dominated by flexural-torsional buckling of the 
uprights.  
 
The LA, LBA, GNA and GMNIAc (no torsion) analyses use the general purpose beam element of the Strand7 
library, while the GMNIAc analysis (torsion) use the beam element B32OS of the Abaqus library for the 
uprights and beam element B33 for the remaining members. The GMNIAs analyses are carried out using the 
general purpose shell element of the Strand7 library. In the GMNIAs analyses, the uprights are supported and 
connected to pallet beams using rigid beam elements, as shown in Fig. 6. The rigid links restrain warping at 
the base while allowing flexural rotations and applying a concentric reaction force. The rigid links also restrain 
warping of the web of the uprights but not the flanges at the pallet beam connection points. In effect, the pallet 
beam connections offer very minor warping restraints to the uprights, while producing a flexurally rigid 
connection.  
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 (a)  (b) 

Figure 6:  GMNIAs modeling of base plate support and upright to pallet beam connection, (a)  FE model of 
support at the base and top of upright, (b)  FE model of upright to pallet beam connection 

 
The rack is assumed to be subject to a vertical force (P) at each upright to pallet beam connection point (fully 
loaded). According to the draft Standard [7], notional horizontal forces of φsV are applied at each beam level, 
where φs is the out-of-plumb and V is the total vertical load applied as the particular level, i.e. 6P for the 
present study. The out-of-plumb depends on the tolerance grade, as per Table 3, and the type of structural 
analysis. For all ultimate limit states analyses, including GMNIA analyses, a minimum value of 1/500 is 
required, while for GNA analysis, a minimum value of φs of 1/333 is required.  
 
The analyses reported in this report are obtained using out-of-plumb values of 1/333 for LA and GNA 
analyses, and values of 1/333, 1/500 and 1/1000 for GMNIA analyses. Ordinarily, an out-of-plumb value of 
1/500 would be used for GMNIA analysis. The additional values of 1/333 and 1/1000 are included in this study 
to investigate the sensitivity of the frame capacity to out-of-plumb. 
 
Member imperfections are included in the GMNIA analyses of the braced and semi-braced frames as per the 
draft Standard. It is not considered necessary to include member imperfection in the GMNIA analyses of the 
unbraced frames as the P-δ (member) moment amplification is negligible compared to the P-Δ (frame) 
moment amplification for these frames. According to the draft Standard, the magnitude of the member 
imperfections is taken as L/1000 where L is the vertical distance between the bracing points, i.e. L=2 m for the 
fully braced frame and L=6 m for the semi-braced frame, as shown in Fig. 2. 
 

Table 3:  Out-of-plumb (φs) as per draft Standard 
Tolerance grade Type of unit load handling equipment Out-of-plumb (φs) 

I Manually operated equipment guided by operator 1/500 

II Manually operated equipment guided by electrical or 
mechanical devices 1/750 

III Fully automatic operated equipment guided by electrical 
or mechanical devices 1/1000 

 
The local and distortional buckling modes and buckling stresses of the RF10015 section are determined using 
Thinwall [10]. The graph of buckling stresses vs half-wavelength for pure compression is shown in Fig. 7a for 
the first two buckling modes. Figure 7b shows the distortional buckling mode, obtained as the second mode at 
a half-wavelength of 1000 mm. The distortional buckling stress for pure compression is obtained as 
fod=330 MPa. The critical local buckling stress for uniform compression is determined as fol=933 MPa. This is 
substantially higher than the yield stress and so local buckling will not occur before reaching the ultimate 
capacity. Consequently, local buckling imperfections are not included in the GMNIAs analysis. 
According to the draft standard, the magnitude of the imperfection in the shape of the distortional buckling 
mode is determined as, 
 

 
od

y
od f

f
tS 3.0=  (1) 
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 (a)  (b) 
Figure 7: Buckling stress vs half-wavelength and distortional buckling mode, (a) Buckling stress vs half-

wavelength, (b) Distortional buckling mode 
 
The distortional imperfection is incorporated in the GMNIAs analysis by linearly flaring the flanges between 
the ends and the centres of the uprights, as exemplified in Fig. 8. 
 

 
Figure 8:  Modeling of the distortional imperfection in GMNIAs analysis 

 
The buckling loads (Pc) of the frames are determined for all bracing configurations using an LBA analysis, as 
summarised in Table 4. The corresponding buckling modes are shown in appendix 1 of the present report. 
The buckling load (Pcb) of the equivalent fully horizontally restrained frame is also determined by preventing 
horizontal displacements of each level of the frame. The buckling load of the laterally restrained frame is close 
to that of the fully braced frame.  
 

Table 4: Frame buckling loads (Pc) in kN. 
Section Bracing arrangement 

100×100×6 SHS RF11015 
Pc (kN) for unbraced rack 20.9 11.0 
Pc (kN) for fully braced rack 337 99.6 
Pc (kN) for semi-braced rack 64.5 22.7 
Laterally restrained frame (Pcb) 342 95.4 
 
The LA and GNA analyses produce axial force (N) and bending moment (M) distributions in the frames for 
given values of applied vertical and horizontal forces. The axial force and bending moment distributions are 
shown in Figs 9a and 9b for the unbraced rack with 100×100×6 mm SHS uprights, as determined from an LA 
analysis. The axial force attains its maximum value between the support and the first beam level, and 
decreases gradually with increasing beam level. The maximum bending moment is generally found between 
the floor and the first beam level, and so the critical (N,M)-combinations are found for the uprights between 
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the floor and the first beam levels. Similar axial force and bending moment distributions are shown for the fully 
braced and semi-braced frames in appendix 2 of the present report.  
 

 
(a)  Axial force distribution 

 
(b)  Bending moment distribution 

Figure 9:  Axial force and bending moment distributions in unbraced rack as determined by LA analysis 
 
The frames fail by inelastic flexural buckling of the uprights between the floor and the first beam level in all 
GMNIA analyses not subject to torsion. When torsion is considered, the overall failure mode is by flexural-
torsional buckling of the uprights between the floor and the first beam level and the uprights between the first 
and second beam level. In the GMNIAs analysis, failure is also associated with distortional buckling, as shown 
in Figs 10a and 10b for the fully braced frame. The ultimate loads (Pu) determined from GMNIA analyses are 
summarised in Discussion.  
 



Analysis-based 2D design of steel storage racks 

School of Civil Engineering Research Report R908 Page 12 
The University of Sydney 

 
(a)  Failure mode of fully braced frame; close-up of first- and second-most uprights near the base. Torsion 

and distortion of the upright are evident.  

 
 (b)  Torsion and warping of critical upright near pallet beam connection point  

Figure 10:  Failure mode of fully braced frame as obtained from GMNIAs analysis 
 
Basis of design 
 
LA and GNA analyses.   
 
The ultimate capacity of the frame (Pu) is determined by calculating the axial (Nc) and flexural (Mb) capacities 
of the uprights using the Australian Standard for Cold-formed Structures AS/NZS4600:2005 [11] and requiring 
the interaction equation be satisfied, 
 

 1=+
∗∗

bbcc M
M

N
N

ϕϕ
 (2) 

 
In eq. (2), N* and M* are the axial force and maximum amplified bending moment in the upright, which are 
functions of the design load (Pu), and ϕc=0.85 and ϕb=0.9 are resistance factors for compression and bending 
respectively. For LA analysis, as per the draft Standard, the amplified bending moment is determined as  
 

 
α

∗
∗ = LAMM  (3) 
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where M*
LA is the 1st order moment determined from the LA analysis, and α is the moment amplification factor, 

calculated as 
 

 ∗−
=

NN
N

e

eα  (4) 

 
where Ne is the buckling load of the upright, as determined from an LBA analysis. It follows that the 
amplification factor may be calculated as, 
 

 
uc

c

PP
P
−

=α  (5) 

 
where Pc is the buckling load of the frame, see Table 4, and Pu is the ultimate design load of the frame which 
is the object of the calculation.  
 
For LA analysis, eqs (2-5) lead to a quadratic equation in Pu while for GNA, increasing values of (N*, M*) are 
substituted into the left-hand side of eq. (2) until the equation is satisfied, thus determining the ultimate value 
of load (Pu).  
 
The axial (Nc) and flexural (Mb) capacities of the uprights are obtained according to the Direct Strength 
Method included in Section 7 of AS/NZS4600 [12], and so account for local and distortional buckling. The 
axial capacity (Nc) is based on the overall flexural buckling load when torsion is not considered, and the 
flexural-torsional buckling load when torsion is considered. Because cross-aisle displacements are restrained, 
flexural-torsional buckling will not occur as a result of bending and hence, the moment capacity for bending 
about the y-axis of symmetry (Mb) is based on the yield moment. The moment capacity is reduced by 
distortional buckling for the non-compact cross-section. 
 
In determining the axial capacity (Nc), the effective length (Ley) for bending about the y-axis is calculated from 
the buckling load (Pcb, see Table 4) of the frame with all beam levels restrained horizontally, as per the draft 
Standard. As shown in appendix 1 of the present report, the effective length for bending about the y-axis is 
generally about 90% of the member length (L=2 m). In view of the warping restraint at the base and the small 
warping restraint at the connection points between uprights and pallet beams, the torsional effective length 
(Lez) is determined as 0.7L for the lengths of upright between the floor and the first beam level, and as 0.9L for 
the uprights between the first and second beam levels. Because of the larger torsional effective length for the 
uprights between the first and second beam levels, these uprights prove critical in determining the beam-
column capacity (i.e. satisfying eq. (2)) in the designs where torsion is considered. 
 
GMNIA analyses.   
 
The analysis provides the maximum load (Pmax) which can be applied to the frame. Depending on the 
elements used in the analysis, torsion and cross-sectional distortion are accounted for. According to the draft 
Standard, the ultimate capacity (Pu) is determined as, 
 
 maxPP su ϕ=  (6) 
 
where ϕs=0.9 is the system resistance factor.  
 
DISCUSSION 
 
The ultimate design capacities obtained on the basis of LA, GNA and GMNIA analyses are summarised in 
Table 5 for the various combinations of bracing arrangement, upright cross-section, and allowance for torsion 
and cross-sectional instability. The six columns on the right provide the ratios between the capacities based 
on LA and GNA analyses and the strength obtained using GMNIA analysis, where GMNIA implies GMNIAc 
when the cross-section is assumed compact and GMNIAs when the cross-section is assumed non-compact. It 
can be seen that the design capacities predicted on the basis of LA and GNA analyses are close for all 
bracing configurations and that, on an average basis, the difference between LA and GNA analysis-based 
capacities and GMNIA-based capacities is ±1% for φs=1/500. Calculation of the ultimate design capacities are 
detailed in appendix 1. 



Analysis-based 2D design of steel storage racks 

School of Civil Engineering Research Report R908 Page 14 
The University of Sydney 

 
 
 

Table 5:  Design capacities (Pu) 

Design capacity (Pu) in kN 
  

Upright 
cross-
section 

Bracing Compact/ 
non-

compact 

Torsion 
of 

upright
s in 

GMNIA 

LA GNA GMNIA 
  

φs=1/100
0 

GMNIA 
  

φs=1/500 

GMNIA 
  

φs=1/333 

 
φs=1/100

0 

 
φs=1/500 

 
φs=1/333 

 
φs=1/100

0 

 
φs=1/500 

 
φs=1/333 

unbraced compact no 20.2 20.0 18.7 18.5 18.2 1.08 1.09 1.11 1.07 1.08 1.10 
braced compact no 113.7 113.6 136.4 134.7 131.6 0.83 0.84 0.86 0.83 0.84 0.86 

SHS 

semi-brac compact no 62.8 61.7 53.4 53.1 52.8 1.18 1.18 1.19 1.15 1.16 1.17 
unbraced compact no 9.96 9.84 9.58 9.32 9.09 1.04 1.07 1.10 1.03 1.06 1.08 

braced compact no 27.3 27.3 31.5 31.1 30.6 0.87 0.88 0.89 0.87 0.88 0.89 
RF11015 

semi-brac compact no 21.1 19.8 17.9 17.7 17.6 1.18 1.19 1.20 1.11 1.12 1.13 
unbraced compact yes 9.59 9.49 9.51 9.26 9.00 1.01 1.04 1.07 1.00 1.02 1.05 

braced compact yes 15.3 15.3 19.3 19.1 19.0 0.79 0.80 0.81 0.79 0.80 0.81 
RF11015 

semi-brac compact yes 15.0 15.0 16.8 16.7 16.6 0.89 0.90 0.90 0.89 0.90 0.90 
unbraced non-comp yes 9.30 9.16 7.88 7.48 7.29 1.18 1.24 1.28 1.16 1.22 1.26 

braced non-comp yes 15.3 15.3 18.4 18.2 18.0 0.83 0.84 0.85 0.83 0.84 0.85 
RF11015 

semi-brac non-comp yes 14.9 14.9 14.9 14.8 14.8 1.00 1.01 1.01 1.00 1.01 1.01 
Average         0.99 1.01 1.02 0.98 0.99 1.01 
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However, the capacity ratios are clearly biased towards the bracing configuration. This is brought out in 
Table 6 which separately lists the averages of the capacity ratios for unbraced, fully braced and semi-braced 
racks. Evidently, GMNIA analysis-based design capacities are consistently conservative for LA and GNA 
analysis-based capacities for unbraced frames and consistently optimistic for LA and GNA analysis-based 
capacities for fully braced frames, irrespective of the out-of-plumb value (φs). For semi-braced frames, GMNIA 
analysis-based design capacities are conservative compared to LA and GNA analysis-based capacities when 
the uprights fail by flexure but may be optimistic when the uprights fail by flexural-torsional buckling. 
 
The capacity of the braced rack frames is largely governed by the axial capacity of the uprights, i.e. the 
N*/ϕcNc-term dominates the left-hand side of eq. (2). To investigate the cause of the optimism of the GMNIA 
analysis-based design capacities for braced frames, a single concentrically loaded box-section upright with an 
imperfection of L/1000 at the centre is analysed using GMNIAc analysis. The column length (L) is taken equal 
to the effective column length based on an LBA analysis, i.e. L=1.83m, producing an ultimate load (Nu) of 
935 kN and hence a design value of ϕsNu=841 kN. This compares with the column strength design value 
obtained using AS/NZS4600 of ϕsNc=701 kN, where Nc=825.7 kN and ϕc=0.85. Thus, the axial design 
capacity obtained using GMNIA analysis is higher than that obtained using AS/NZS4600, which is partly 
because the system resistance factor (ϕs=0.9) is higher than the column resistance factor (ϕc=0.85), and 
partly because the nominal strength determined using GMNIA analysis is higher than the design strength 
obtained using the column strength curve in AS/NZS4600. The latter result may, in part, be a consequence of 
the omission of residual stresses in the GMNIA analysis model.  
 

Table 6:  Design capacities (Pu) for each bracing configuration 

  
Bracing Upright 

cross-
section 

Compac
t/ 

non-
compact 

Torsion 
of 

upright
s in 

GMNIA 

 
φs=1/1000 

 
φs=1/500 

 
φs=1/333 

 
φs=1/1000 

 
φs=1/500 

 
φs=1/333 

SHS compact no 1.08 1.09 1.11 1.07 1.08 1.10 
RF11015 compact no 1.04 1.07 1.10 1.03 1.06 1.08 
RF11015 compact yes 1.01 1.04 1.07 1.00 1.02 1.05 

unbrace
d 

RF11015 non-comp yes 1.18 1.24 1.28 1.16 1.22 1.26 
Average unbraced 1.08 1.11 1.14 1.07 1.10 1.12 

braced compact no 0.83 0.84 0.86 0.83 0.84 0.86 
braced compact no 0.87 0.88 0.89 0.87 0.88 0.89 
braced compact yes 0.79 0.80 0.81 0.79 0.80 0.81 

braced 

braced non-comp yes 0.83 0.84 0.85 0.83 0.84 0.85 
Average braced 0.83 0.84 0.85 0.83 0.84 0.85 

semi-brac compact no 1.18 1.18 1.19 1.15 1.16 1.17 
semi-brac compact no 1.18 1.19 1.20 1.11 1.12 1.13 
semi-brac compact yes 0.89 0.90 0.90 0.89 0.90 0.90 

semi-
braced 

semi-brac non-comp yes 1.00 1.01 1.01 1.00 1.01 1.01 
Average semi-braced 1.06 1.07 1.08 1.04 1.05 1.05 

 
To investigate the effect of bending moments on the strength of rack frames, the (N*,M*)-values obtained from 
the GNA and GMNIAc analyses of the braced, unbraced and semi-braced frames with box section uprights 
are shown in Fig. 11 and compared with the linear interaction strength curve specified in AS/NZS4600. The 
following conclusions can be drawn from the figure: 
 

• The bending moment in the critical upright (2nd upright from the left between the floor and the first 
beam level) of the braced frame is negligible in the GNA analysis (see Figs 11a and 11b) and smaller 
than in the GMNIAc analysis in which it is amplified by member imperfections.  The axial capacity as 
obtained from GMNIAc analysis is insignificantly reduced by the presence of a bending moment in the 
braced frame, implying that the interaction curve determined by GMNIAc analysis is not linear in the 
high axial force region; a well-known result for compact I- and rectangular hollow sections, e.g. see 
[12].  

• The (N*,M*)-curves are highly non-linear for the unbraced frames. As shown in Fig. 11c, the bending 
moment increases rapidly as the load (P) approaches the buckling load of the frame (Pc=20.9 kN, see 
Table 4) and, in effect, the design load (Pu) is governed by the elastic buckling load. Because this is 
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not factored down by a resistance factor, the design capacities based on LA and GNA analyses are 
higher than those based on GMNIAc analysis, which are always reduced by a system resistance 
factor (ϕs) irrespective of the mode of failure. This explains why the GMNIAc analysis-based design 
capacities shown in Tables 5 and 6 are conservative compared to LA and GNA analysis-based design 
capacities for unbraced frames.  
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(a) Results for braced, unbraced and semi-braced frames 
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 (b) Results for braced frame at high axial loads (c) Results for unbraced 

Figure 11:  (N,M)-paths for GNA and GMNIA analyses for braced rack frame.  
 
It can be seen from the averages shown in Table 6 that for braced and semi-braced frames, the difference in 
the design capacities based on LA and GNA analyses is of the order of 1%-2% for out-of-plumb values 
varying from 1/1000 to 1/333. For unbraced frames, the design capacities based on LA and GNA analyses 
change by 6% and 5%, respectively, for out-of-plumb values varying from 1/1000 to 1/333; implying a modest 
dependency on the out-of-plumb.  
 
CONCLUSIONS 
 
This report presents a comparison of the design capacities of steel rack frames based on linear analysis (LA), 
geometric nonlinear analysis (GNA) and geometric and material nonlinear analysis (GMNIA). When based on 
LA and GNA analyses, the design is carried out to the Australian cold-formed steel structures AS/NZS4600. 
The study includes braced, unbraced and semi-braced frames. It is shown that, 
 

• LA and GNA analyses produce nearly the same design capacities irrespective of the bracing 
configuration. 

• On average, considering all bracing configurations, the design capacities based on LA and GNA 
analyses are within 1% of those determined using GMNIA analysis.  
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• GMNIA-based design is conservative for unbraced frames while optimistic for braced frames 
compared to design capacities based on LA and GNA analyses.  

• The design capacity is insignificantly affected by out-of-plumb for braced and semi-braced frames, 
while moderately affected for unbraced frames, for which an increase in out-of-plumb from 1/1000 to 
1/333 results in an average decrease in capacity of the order of 5%. 

• Flexural-torsional buckling is shown to significantly reduce the design capacity in the case of rear-
flange uprights subject to high axial forces.  

• The rear-flange section is subject to distortional buckling. The GMNIA analysis-based design 
capacities are more significantly reduced than predicted by the Direct Strength Method incorporated 
in AS/NZS4600.  

 
The study provides evidence to show that the structural design of steel rack frames may be based on 
advanced material and geometric nonlinear analyses. Such GMNIA analyses obviate the need for checking 
the section and/or member capacities to a structural standard. The study includes to compact and non-
compact sections and members which fail by flexural as well as flexural-torsional buckling. 
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Steel Storage Racks

Design Example: Unbraced rack
Compact SHS and CHS cross-section, (no locol or distortional buckling)
Down-aisle displacements only, (2D behaviour)
Flexure only, (no torsion)

Kim Rasmussen & Benoit Gilbert

Fig. 1: Unbraced rack, box sections, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 



Required: The unbraced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 SHS100x100x6, SHS60x60x4 and
CHS30x2 respectively. The rack uprights are subjected to equal forces (P) at all joints between
uprights and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken
as 0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for an unbraced steel
storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

bu 100mm:= tu 6mm:= rou 6 mm⋅:= Note:  bu, tu, rou and riu are the width,
thickness, outer corner radius and inner
corner radius of the chord, respectively. Au
and Iu are the area and 2nd moment of area
of the chord respectively.

Au 2256mm2
:= Iu 3.336 106

⋅ mm4
⋅:= riu rou tu−:=

riu 0 mm=

ru
Iu
Au

:= ru 38.454 mm=

Zu
Iu
bu

2

:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=



1  Design based on LA analysis

The maximum bending moment develops at node 48 in Element 52  at the first beam level, as
shown in Fig. 2.The maximum axial force develops in Element 244 of the rightmost upright.

The axial force and bending moments in the critical uprights between the floor and 1st beam level
(here termed Members 1 and 2), as determined from an LA analysis. are:

Member 1:  N=-6.001P   M11= 0    M12=-0.0391 P*m  (Element 244 in LA, rightmost upright)
Member 2:  N=-6.045P   M21= 0    M22=-0.0225 P*m  (Element 52 in LA, 2nd upright from left)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is
20.94kN. The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all
beam levels prevented against sidesway, is 342.8kN. The corresponding buckling mode is shown in
Fig. 3. The axial load in the uprights between the floor and the first beam level uprights is found
from Ncrb=6Pcrb (approximately).

Pcr 20.94kN:=

cN1 6.001:= Ncr1 cN1 Pcr⋅:= Ncr1 125.661 kN=

cN2 6.045:= Ncr2 cN2 Pcr⋅:= Ncr2 126.582 kN=

Pcrb 342.8 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 2.057 103
× kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.833 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 911.702 MPa=

λc
fyu

foc
:= λc 0.703=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 366.009 MPa=

Determine the effective area:

b bu 2rou−:= b 88 mm=

fcr
4 π

2
⋅ E⋅

12 1 ν
2

−( )⋅

tu
b

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅:= fcr 3.529 103
× MPa=

λ
fn
fcr

:= λ 0.322=



beu if λ 0.673< b,
1
λ

0.22

λ
2

−⎛
⎜
⎝

⎞
⎟
⎠

b⋅,⎡
⎢
⎣

⎤
⎥
⎦

:= beu 88 mm=

Aeu 4 beu⋅ tu⋅ 4 tu
2

⋅+:= Aeu 2.256 103
× mm2

=

Column capacity:

Nc Aeu fn⋅:= Nc 825.717 kN=

Bending capacity of upright

The upright members will not fail by flexural-torsional buckling because of their high torsional
rigidity. We therefore only need to check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:
Msu fyu Zu⋅:= Msu 30.024 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.001, M11*=0 and M12*=cM1*P*m, cM1=-0.0391m;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0391 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=



AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 20.94 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 20.2 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=6.045, M21*=0 and M22*=cM2*P*m, cM2=-0.0225;  and αn=1-N*/Ne.    The
interaction equation  leads to a quadratic in P which has been solved using auxiliary parameters AA
and BB.

cM2 0.0225 m⋅:=

AA2
cN2

φc Nc⋅ Pcr⋅
:= BB2

cN2

φc Nc⋅

cM2 Cm⋅

φb Msu⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 20.506 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of Members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 20.2 kN= P2 20.506 kN=

Pmin min P1 P2,( ):= Pmin 20.2 kN= PLA Pmin:=

2  Design based on GNA analysis

In the GNA analysis, the maximum design actions develop at the first beam level.The maximum
axial force is found in the rightmost upright, while the maximum moment is found in the second
upright from the side where the horizontal force is acting. The axial force (N) and bending moment
(M) are nonlinear functions of the applied force (P).  

The axial member capacity (Nc) and bending capacity (Mb=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.



Data
GNA - unbraced - PRFSA.xls

:=

Data

16

18

20

20.3

2.498

4.832

15.91

21.53

98.42

112.4

133.7

140.6

3.152

6.135

21.31

29.77

96.05

108.1

119.9

121.6

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 3..∈for:=

Element 244 (right-hand upright):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 3..∈for:=

P

16

18

20

20.3

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS1

0.233

0.339

0.779

0.997

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Element 52 (2nd left-most upright):

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 3..∈for:=

P

16

18

20

20.3

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS2

0.253

0.381

0.959

1.275

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=



10 12 14 16 18 20
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 2:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 20 kN= y1 0.959=

Pu 20.039 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 20.3 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 18.27 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 20.2 kN= PGNA 20.039 kN= PGMNIAc 18.27 kN=

The factored ultimate load (18.27kN) determined on the basis of a GMNIAc analysis is 10.6% and
9.7% lower than those (20.2kN and 20.039kN) obtained using LA and GNA analyses, respectively.
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Steel Storage Racks

Design Example: Semi-braced rack
Compact SHS and CHS cross-section, (no locol or distortional buckling)
Down-aisle displacements only, (2D behaviour)
Flexure only, (no torsion)

Kim Rasmussen & Benoit Gilbert

Fig. 1: Semi-braced rack, box sections, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 



Required: The semi-braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. Bracing spans over three beam
levels and so the frame is termed "semi-braced". The rack is assumed to be pin-ended at the
base and all pallet beam to upright connections are assumed rigid.  The uprights, beams and
brace members are Grade 450 SHS100x100x6, SHS60x60x4 and CHS30x2 respectively. The
rack uprights are subjected to equal forces (P) at all joints between uprights and pallet beams.
The horizontal forces representing the effect of out-of-plumb is taken as 0.003V in accordance
with the draft Australian standard for Steel Storage Racks, where V is the total vertical force
acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for an semi-braced
steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

bu 100mm:= tu 6mm:= rou 6 mm⋅:= Note:  bu, tu, rou and riu are the width,
thickness, outer corner radius and inner
corner radius of the chord, respectively. Au
and Iu are the area and 2nd moment of area
of the chord respectively.

Au 2256mm2
:= Iu 3.336 106

⋅ mm4
⋅:= riu rou tu−:=

riu 0 mm=

ru
Iu
Au

:= ru 38.454 mm=

Zu
Iu
bu

2

:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=



1  Design based on LA analysis

The maximum axial force develops between the floor and the first beam level. The axial force is
essentially the same in all uprights, although slightly lower in the left-most upright. Of the six uprights,
the bending moment is fractionally higher at node 134 in Element 148. The maximum bending moment
in the frame develops at node 13 in Element 13, as shown in Fig. 2.

The axial force and bending moments in the critical uprights between the floor and 1st beam level and in
element 13 (here termed Members 1 and 2), as determined from an LA analysis. are:

Member 1:  N=-6.000P   M11= 0         M12=-0.0052 P*m  (Element 148 in LA, 4th upright from the left)
Member 2:  N=-2.960P   M21= 0.0046 M22=-0.0084 P*m  (Element 13 in LA, leftmost upright)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 64.50kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 339.3kN. The corresponding buckling mode is shown in Fig. 3.
The axial load in the uprights between the floor and the first beam level uprights is found from N crb=6Pcrb
(approximately).

Pcr 64.5kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 387 kN=

cN2 2.960:= Ncr2 cN2 Pcr⋅:= Ncr2 190.92 kN=

Pcrb 339.3 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 2.036 103
× kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.843 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 902.394 MPa=

λc
fyu

foc
:= λc 0.706=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 365.23 MPa=

Determine the effective area:

b bu 2rou−:= b 88 mm=

fcr
4 π

2
⋅ E⋅

12 1 ν
2

−( )⋅

tu
b

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅:= fcr 3.529 103
× MPa=



λ
fn
fcr

:= λ 0.322=

beu if λ 0.673< b,
1
λ

0.22

λ
2

−⎛
⎜
⎝

⎞
⎟
⎠

b⋅,⎡
⎢
⎣

⎤
⎥
⎦

:= beu 88 mm=

Aeu 4 beu⋅ tu⋅ 4 tu
2

⋅+:= Aeu 2.256 103
× mm2

=

Column capacity:

Nc Aeu fn⋅:= Nc 823.959 kN=

Bending capacity of upright

The upright members will not fail by flexural-torsional buckling because of their high torsional
rigidity. We therefore only need to check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:
Msu fyu Zu⋅:= Msu 30.024 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11*=0 and M12*=cM1*P*m, cM1=-0.0052m;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0052 m⋅:=

Cm 1.0:=



φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 64.5 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 62.812 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=2.960, M21*=cM21*P*m, cM21=0.0046 and M22*=cM22*P*m,
cM22=-0.0084;  and αn=1-N*/Ne.    The interaction equation  leads to a quadratic in P which has
been solved using auxiliary parameters AA and BB.

cM21 0.0046 m⋅:= cM22 0.0084 m⋅:=

AA2
cN2

φc Nc⋅ Pcr⋅
:= BB2

cN2

φc Nc⋅

cM22 Cm⋅

φb Msu⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 62.786 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of Members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 62.812 kN= P2 62.786 kN=

Pmin min P1 P2,( ):= Pmin 62.786 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level in the GNA analysis.The maximum
axial force and bending moment are found in the 4th upright from the left (Element 196). The axial
force (N) and bending moment (M) are nonlinear functions of the applied force (P).  

The axial member capacity (Nc) and bending capacity (Mb=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.



Data
GNA - semibraced - PRFSA.xls

:=

Data

59

59.5

60

60.5

61

61.5

62

62.5

4.957

6.191

6.951

7.925

9.231

11.115

14.244

23.665

363.92

367.766

371.279

374.916

378.744

382.909

387.802

396.432

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 7..∈for:=

Element 196 (4th upright from the left):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 7..∈for:=

P

59

59.5

60

60.5

61

61.5

62

62.5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

kN= LHS1

0.703

0.754

0.787

0.829

0.882

0.958

1.081

1.442

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

58 59 60 61 62 63
0

0.5

1

1.5

LHS1

P



Determine the value of P producing a LHS of unity by interpolation:

nu 5:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS1nu

:= y2 LHS1nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 61.5 kN= y1 0.958=

Pu 61.671 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 58.7 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 52.83 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 62.786 kN= PGNA 61.671 kN= PGMNIAc 52.83 kN=

The factored ultimate load (52.83kN) determined on the basis of a GMNIAc analysis is 18.8% and
16.7% lower than those (62.786kN and 61.671kN) obtained using LA and GNA analyses, respectively.
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Design Example: Fully braced rack
Compact SHS and CHS cross-section, (no local or distortional buckling)
Down-aisle displacements only, (2D behaviour)
Flexure only, (no torsion)

Kim Rasmussen & Benoit Gilbert

Fig. 1: Fully braced rack, box sections, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial and bending moment diagrams (LA) 

Fig. 3: Buckling mode when all beam levels are restrained (LBA) 



Required: The fully braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 SHS100x100x6, SHS60x60x4 and
CHS30x2 respectively. The rack uprights are subjected to equal forces (P) at all joints between
uprights and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken
as 0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for a fully braced
steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

bu 100mm:= tu 6mm:= rou 6 mm⋅:= Note:  bu, tu, rou and riu are the width,
thickness, outer corner radius and inner
corner radius of the chord, respectively. Au
and Iu are the area and 2nd moment of area
of the chord respectively.

Au 2256mm2
:= Iu 3.336 106

⋅ mm4
⋅:= riu rou tu−:=

riu 0 mm=

ru
Iu
Au

:= ru 38.454 mm=

Zu
Iu
bu

2

:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=



1  Design based on LA analysis

The maximum axial force and maximum bending moment develop at node 48 in Element 52  at the
first beam level, as shown in Fig. 2.

The axial force and bending moment in the critical upright between the floor and 1st beam level
(here termed Member 1), as determined from an LA analysis, are:

Member 1:  N=-6.128P   M11= 0    M12=-0.0011 P*m  (Element 52 in LA)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is
337.1kN. The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all
beam levels prevented against sidesway, is 342.8kN. The corresponding buckling mode is shown in
Fig. 3. The axial load in the uprights between the floor and the first beam level uprights is found
from Ncrb=6Pcrb (approximately).

Pcr 337.1kN:=

cN1 6.128:= Ncr1 cN1 Pcr⋅:= Ncr1 2.066 103
× kN=

Pcrb 342.8 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 2.057 103
× kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.833 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 911.702 MPa=

λc
fyu

foc
:= λc 0.703=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 366.009 MPa=

Determine the effective area:

b bu 2rou−:= b 88 mm=

fcr
4 π

2
⋅ E⋅

12 1 ν
2

−( )⋅

tu
b

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅:= fcr 3.529 103
× MPa=

λ
fn
fcr

:= λ 0.322=



beu if λ 0.673< b,
1
λ

0.22

λ
2

−⎛
⎜
⎝

⎞
⎟
⎠

b⋅,⎡
⎢
⎣

⎤
⎥
⎦

:= beu 88 mm=

Aeu 4 beu⋅ tu⋅ 4 tu
2

⋅+:= Aeu 2.256 103
× mm2

=

Column capacity:

Nc Aeu fn⋅:= Nc 825.717 kN=

Bending capacity of upright

The upright members will not fail by flexural-torsional buckling because of their high torsional
rigidity. We therefore only need to check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:

Msu fyu Zu⋅:= Msu 30.024 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN*P, cN=6.128, M11*=0 and M12*=cM*P*m, cM=-0.0011;  and αn=1-N*/Ne.   The
interaction equation  leads to a quadratic in P which has been solved using auxiliary parameters AA
and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0011 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=



AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 337.1 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 113.733 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Design capacity of storage rack based on LA analysis:

The maximum factored design load (P) is: 

PLA P1:= PLA 113.733 kN=

2  Design based on GNA analysis

The maximum design actions develop near the base of the right-most upright. In the GNA analysis,
the axial force (N) and bending moment (M) are nonlinear functions of the applied force (P), as
shown in Figs 5 and 6 respectively.

The axial member capacity (Nc) and bending capacity (Mb=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - braced - PRFSA.xls

:=

Data

100

110

120

0.105

0.12

0.134

615.2

676.9

738

0.113

0.129

0.147

600

660

720

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 2..∈for:=



Element 52 (bottom of 2nd left-most upright):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 2..∈for:=

P

100

110

120

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS1

0.88

0.969

1.056

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

Element 196 (bottom of 2nd right-most upright):

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 2..∈for:=

P

100

110

120

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS2

0.859

0.945

1.031

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

100 105 110 115 120
0

0.5

1

1.5

LHS1

LHS2

P

The LHS of the interaction equation varies essentially linearly with the applied load (P) in the
load range shown. Determine the value of P producing a LHS of unity by interpolation:

nu 1:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS1nu

:= y2 LHS1nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 110 kN= y1 0.969=

Pu 113.554 kN= PGNA Pu:=



3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 146.2 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 131.58 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 113.733 kN= PGNA 113.554 kN= PGMNIAc 131.58 kN=

The factored ultimate load (131.58kN) determined on the basis of a GMNIAc analysis is 13.6% and
13.7% higher than those (113.733kN and 113.554kN) obtained using LA and GNA analyses,
respectively.
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Steel Storage Racks

Design Example: Unbraced rack
RF10015 section for uprights and SHS for pallet beams; all members analysed and
designed assuming local and distortional buckling does not occur. 
Down-aisle displacements only, (2D behaviour).
Flexure only, (while torsion of the uprights will occur in the ultimate limit state,
torsion is ignored in the analysis and design calculations).

Kim Rasmussen & Benoit Gilbert

Fig. 1: Unbraced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 



Required: The unbraced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 RF100115, SHS60x60x4 and CHS30x2
respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for an unbraced steel
storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

Au 508.5mm2
:= Iu 8.484 105

⋅ mm4
⋅:= xmax

110
2

mm⋅:= xmax 55 mm=

ru
Iu
Au

:= ru 40.847 mm=

Zu
Iu

xmax
:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=



1  Design based on LA analysis

The maximum bending moment develops at node 48 in Element 52  at the first beam level, as
shown in Fig. 2.The maximum axial force develops in Element 244 of the rightmost upright.

The axial force and bending moments in the critical uprights between the floor and 1st beam level
(here termed Members 1 and 2), as determined from an LA analysis, are:

Member 1:  N=-6.046P   M11= 0    M12=-0.0299 P*m  (Element 244 in LA, rightmost upright)
Member 2:  N=-6.003P   M21= 0    M22=-0.0394 P*m  (Element 52 in LA, 2nd upright from left)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is
11.05kN. The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all
beam levels prevented against sidesway, is 95.43kN. The corresponding buckling mode is shown in
Fig. 3. The axial load in the uprights between the floor and the first beam level uprights is found
from Ncrb=6Pcrb (approximately).

Pcr 11.05kN:=

cN1 6.046:= Ncr1 cN1 Pcr⋅:= Ncr1 66.808 kN=

cN2 6.003:= Ncr2 cN2 Pcr⋅:= Ncr2 66.333 kN=

Pcrb 95.43 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 572.58 kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.752 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 1.126 103

× MPa=

λc
fyu

foc
:= λc 0.632=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 380.687 MPa=

Determine the effective area:

Since the section is assumed not to undergo local or distortional
buckling, the effective area is taken as the gross area.

Aeu Au:= Aeu 508.5 mm2
=

Column capacity:

Nc Aeu fn⋅:= Nc 193.58 kN=



Bending capacity of upright

The upright members are assumed not to develop torsion. Accordingly, we therefore only need to
check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:

Msu fyu Zu⋅:= Msu 6.941 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.046, M11*=0 and M12*=cM1*P*m, cM1=-0.0299m;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0299 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 11.05 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 10.189 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=



Member 2: 

We have N*=cN2*P, cN2=6.003, M21*=0 and M22*=cM2*P*m, cM2=-0.0394;  and αn=1-N*/Ne.    The
interaction equation  leads to a quadratic in P which has been solved using auxiliary parameters AA
and BB.

cM2 0.0394 m⋅:=

AA2
cN2

φc Nc⋅ Pcr⋅
:= BB2

cN2

φc Nc⋅

cM2 Cm⋅

φb Msu⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 9.96 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of Members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 10.189 kN= P2 9.96 kN=

Pmin min P1 P2,( ):= Pmin 9.96 kN= PLA Pmin:=

2  Design based on GNA analysis

In the GNA analysis, the maximum design actions develop at the first beam level.The maximum
axial force is found in the rightmost upright, while the maximum moment is found in the second
upright from the side where the horizontal force is acting. The axial force (N) and bending moment
(M) are nonlinear functions of the applied force (P).  

The axial member capacity (Nc) and bending capacity (Mb=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - unbraced - PRFSA.xls

:=

Data

9

9.5

10

10.5

1.661

2.325

3.62

7.137

55.31

58.72

62.54

67.66

2.086

2.913

4.535

8.985

54.1

57.14

60.2

63.36

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=



P

ssi Datai 0, kN⋅←

ss

i 0 3..∈for:=

Element 244 (right-hand upright):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 3..∈for:=

P

9

9.5

10

10.5

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS1

0.602

0.729

0.96

1.554

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Element 52 (2nd left-most upright):

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 3..∈for:=

P

9

9.5

10

10.5

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS2

0.663

0.814

1.092

1.823

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=



8 8.5 9 9.5 10 10.5 11 11.5 12
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 1:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 9.5kN= y1 0.814=

Pu 9.835 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 10.1 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 9.09 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 9.96 kN= PGNA 9.835 kN= PGMNIAc 9.09 kN=

The factored ultimate load (9.09kN) determined on the basis of a GMNIAc analysis is 9.6% and 8.2%
lower than those (9.96kN and 9.835kN) obtained using LA and GNA analyses, respectively.
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Steel Storage Racks

Design Example: Semi-braced rack
RF10015 section for uprights and SHS for pallet beams; all members analysed and
designed assuming local and distortional buckling does not occur. 
Down-aisle displacements only, (2D behaviour).
Flexure only, (while torsion of the uprights will occur in the ultimate limit state,
torsion is ignored in the analysis and design calculations).

Kim Rasmussen & Benoit Gilbert

Fig. 1: Semi-braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The semi-braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. Bracing spans over three beam
levels and so the frame is termed "semi-braced". The rack is assumed to be pin-ended at the



base and all pallet beam to upright connections are assumed rigid.  The uprights, beams and
brace members are Grade 450 RF100115, SHS60x60x4 and CHS30x2 respectively. The rack
uprights are subjected to equal forces (P) at all joints between uprights and pallet beams. The
horizontal forces representing the effect of out-of-plumb is taken as 0.003V in accordance with
the draft Australian standard for Steel Storage Racks, where V is the total vertical force acting
at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for an semi-braced
steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

Au 508.5mm2
:= Iu 8.484 105

⋅ mm4
⋅:= xmax

110
2

mm⋅:= xmax 55 mm=

ru
Iu
Au

:= ru 40.847 mm=

Zu
Iu

xmax
:=

Beam geometry:

bb 60mm:= tb 4mm:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=

1  Design based on LA analysis

The maximum axial force develops between the floor and the first beam level. The axial force is
essentially the same in all uprights, although slightly lower in the left-most upright and third left-most
uprights because the bracing support some axial load. Of the six uprights, the bending moment is



fractionally higher at node 177 in Element 196. The maximum bending moment in the frame develops at
node 13 in Element 12, as shown in Fig. 2.

The axial force and bending moments in the critical uprights between the floor and 1st beam level and in
element 13 (here termed Members 1 and 2), as determined from an LA analysis, are:

Member 1:  N=-6.000P   M11= 0         M12=-0.0049 P*m  (Element 196 in LA, 5th upright from the left)
Member 2:  N=-3.498P   M21=-0.0056 M22=-0.0084 P*m  (Element 12 in LA, leftmost upright)

The elastic buckling load of the unbraced frame (Pcr), as determined from an LBA analysis, is 22.73kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 89.71kN. The corresponding buckling mode is shown in Fig. 3.
The axial load in the uprights between the floor and the first beam level uprights is found from N crb=6Pcrb
(approximately).

Pcr 22.73kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 136.38 kN=

cN2 3.498:= Ncr2 cN2 Pcr⋅:= Ncr2 79.51 kN=

Pcrb 89.71 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 538.26 kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.807 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 1.059 103

× MPa=

λc
fyu

foc
:= λc 0.652=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 376.649 MPa=

Determine the effective area:

Since the section is assumed not to undergo local or distortional
buckling, the effective area is taken as the gross area.

Aeu Au:= Aeu 508.5 mm2
=

Column capacity:

Nc Aeu fn⋅:= Nc 191.526 kN=



Bending capacity of upright

The upright members will not fail by flexural-torsional buckling because of their high torsional
rigidity. We therefore only need to check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:
Msu fyu Zu⋅:= Msu 6.941 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11*=0 and M12*=cM1*P*m, cM1=-0.0052m;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0049 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 22.73 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 21.054 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=



Member 2: 

We have N*=cN2*P, cN2=3.498, M21*=cM21*P*m, cM21=0.0056 and M22*=cM22*P*m,
cM22=-0.0084;  and αn=1-N*/Ne.    The interaction equation  leads to a quadratic in P which has
been solved using auxiliary parameters AA and BB.

cM21 0.0056 m⋅:= cM22 0.0084 m⋅:=

AA2
cN2

φc Nc⋅ Pcr⋅
:= BB2

cN2

φc Nc⋅

cM22 Cm⋅

φb Msu⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 21.508 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of Members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 21.054 kN= P2 21.508 kN=

Pmin min P1 P2,( ):= Pmin 21.054 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level in the GNA analysis.The maximum
axial force and bending moment are found in the 4th upright from the left (Element 196). The axial
force (N) and bending moment (M) are nonlinear functions of the applied force (P).  

The axial member capacity (Nc) and bending capacity (Mb=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - semibraced - PRFSA.xls

:=

Data

0 1 2

0

1

2

3

4

5

6

7

8

18 0.856 110.361

18.5 0.983 113.561

19 1.148 116.802

19.5 1.369 120.105

20 1.685 123.511

20.5 2.348 127.478

21 3.457 131.81

21.25 4.549 134.535

21.375 5.589 136.437

=



9

10

11

21.438 6.549 137.869

21.469 7.505 139.108

21.5 11.68 143.851

P

ssi Datai 0, kN⋅←

ss

i 0 10..∈for:=

Element 196 (4th upright from the left):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 10..∈for:=

P

0

0

1

2

3

4

5

6

7

8

9

10

18

18.5

19

19.5

20

20.5

21

21.25

21.375

21.438

21.469

kN= LHS1

0

0

1

2

3

4

5

6

7

8

9

10

0.815

0.855

0.901

0.957

1.028

1.159

1.363

1.555

1.733

1.895

2.056

=

18 19 20 21 22
0

0.5

1

1.5

LHS1

P

Determine the value of P producing a LHS of unity by interpolation:

nu 3:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS1nu

:= y2 LHS1nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:=

Pu 19.801 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 19.5 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 17.55 kN=



4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 21.054 kN= PGNA 19.801 kN= PGMNIAc 17.55 kN=

The factored ultimate load (17.55kN) determined on the basis of a GMNIAc analysis is 19.9% and
12.8% lower than those (21.054kN and 19.801kN) obtained using LA and GNA analyses, respectively.
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Design Example: Fully braced rack
RF10015 section for uprights and SHS for pallet beams; all members analysed and
designed assuming local and distortional buckling does not occur. 
Down-aisle displacements only, (2D behaviour).
Flexure only, (while torsion of the uprights will occur in the ultimate limit state,
torsion is ignored in the analysis and design calculations).

Kim Rasmussen & Benoit Gilbert

Fig. 1: Fully braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial and bending moment diagrams (LA) 

Fig. 3: Buckling mode when all beam levels are restrained (LBA) 

Required: The fully braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be



pin-ended at the base and all pallet beam to upright connections are assumed rigid. The
uprights, beams and brace members are Grade 450 RF100115, SHS60x60x4 and CHS30x2
respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft revised Australian Standard AS4084. The design will be
based on LA, GNA and GMNIAc analyses. For design using LA and GNA analyses, member
design check is carried out according to AS/NZS4600. The objective of this example is to
compared the capacities obtained using these three analysis approaches for a fully braced
steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:

Au 508.5mm2
:= Iu 8.484 105

⋅ mm4
⋅:= xmax

110
2

mm⋅:= xmax 55 mm=

ru
Iu
Au

:= ru 40.847 mm=

Zu
Iu

xmax
:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel tubes):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:=



1  Design based on LA analysis

The maximum axial force and maximum bending moment develop at node 177 in Element 196  at
the first beam level, as shown in Fig. 2.

The axial force and bending moment in the critical upright between the floor and 1st beam level
(here termed Member 1), as determined from an LA analysis, are:

Member 1:  N=-6.000P   M11= 0    M12=-0.0010 P*m  (Element 196 in LA)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is
99.55kN. The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all
beam levels prevented against sidesway, is 95.56kN. The corresponding buckling mode is shown in
Fig. 3. The axial load in the uprights between the floor and the first beam level uprights is found
from Ncrb=6Pcrb (approximately).

Pcr 99.55kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 597.3 kN=

Pcrb 95.56 kN⋅:= Ncrb 6 Pcrb⋅:= Ncrb 573.36 kN=

Axial capacity of upright Members 1 and 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length may be back-calculated from the
critical bukling load of the corresponding fully braced rack, i.e.based on N crb

Le π
E Iu⋅

Ncrb
⋅:= Le 1.751 m=

Determine the column strength according to AS/NZS4600

foc
Ncrb

Au
:= foc 1.128 103

× MPa=

λc
fyu

foc
:= λc 0.632=

fn if λc 1.5< 0.658
λ c

2

fyu⋅,
0.977

λc
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn 380.774 MPa=

Determine the effective area:

Since the section is assumed not to undergo local or distortional
buckling, the effective area is taken as the gross area.

Aeu Au:= Aeu 508.5 mm2
=

Column capacity:

Nc Aeu fn⋅:= Nc 193.624 kN=



Bending capacity of upright

The upright members will not fail by flexural-torsional buckling because of their high torsional
rigidity. We therefore only need to check the in-plane capacity.

We ignore local buckling effects and base the section modulus on the full cross-section area:

Msu fyu Zu⋅:= Msu 6.941 kN m⋅=

Combined compression and bending capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                                   N*/(φc Nc) + CmM*/(φb Mbα) < 1

where M* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                                α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the buckling load, as determined from an LBA analysis. It is therefore seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN*P, cN=6.000, M11*=0 and M12*=cM*P*m, cM=-0.0010;  and αn=1-N*/Ne.   The
interaction equation  leads to a quadratic in P which has been solved using auxiliary parameters AA
and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cM1 0.0010 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc⋅ Pcr⋅
:= BB1

cN1

φc Nc⋅

cM1 Cm⋅

φb Msu⋅
+

1
Pcr

+:= Pcr 99.55 kN=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 27.265 kN=

check
cN1 P1⋅

φc Nc⋅

cM1 P1⋅ Cm⋅

φb Msu⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=



Design capacity of storage rack based on LA analysis:

The maximum factored design load (P) is: 

PLA P1:= PLA 27.265 kN=

2  Design based on GNA analysis

The maximum design actions develop near the base of the right-most upright. In the GNA analysis,
the axial force (N) and bending moment (M) are nonlinear functions of the applied force (P).

The axial member capacity (Nc) and bending capacity (Mby=Ms) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - braced - PRFSA.xls

:=

Data

25

30

35

0.019

0.023

0.029

148.8

178.7

208.5

0.022

0.027

0.036

150

180

210

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 2..∈for:=

Element 52 (bottom of 2nd left-most upright):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 2..∈for:=

P

25

30

35

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS1

0.907

1.09

1.272

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

Element 196 (bottom of 2nd right-most upright):



LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc⋅

M
φb Msu⋅

+←

ss

i 0 2..∈for:=

P

25

30

35

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS2

0.915

1.098

1.282

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

26 28 30 32 34
0

0.5

1

1.5

LHS1

LHS2

P

The LHS of the interaction equation varies essentially linearly with the applied load (P) in the
load range shown. Determine the value of P producing a LHS of unity by interpolation:

nu 0:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 25 kN= y1 0.915=

Pu 27.325 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 34.0 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 30.6 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 27.265 kN= PGNA 27.325 kN= PGMNIAc 30.6 kN=

The factored ultimate load (30.6kN) determined on the basis of a GMNIAc analysis is 10.9% and
10.7% higher than those (27.265kN and 27.325kN) obtained using LA and GNA analyses,
respectively.
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BD062 Steel Storage Racks

Design Example: Unbraced rack - compact upright cross-section, torsion of uprights

RF10015 section for uprights and SHS for pallet beams. 

The uprights and pallet beam members are analysed and designed assuming local and
distortional buckling does not occur. 

Down-aisle displacements only, (2D behaviour), and torsion. The uprights are restrained
in the cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

The GMNIAc analysis accounts for warping torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Unbraced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The unbraced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2



respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAc analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for an unbraced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry: Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.

Au 508.5mm2
:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=



rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the
floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical
uprights in the two lowest levels of the frame need to be determined.

For the uprights between the floor and the first beam level, the maximum bending moment develops at
node 48 in Element 52  of the 2nd left-most upright at the first beam level, as shown in Fig. 2.The
maximum axial force develops in Element 244 of the rightmost upright. The critical member (here
termed Member 1) can be shown to be the second left-most upright (containing element 52).

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second left-most upright (containing Element 56). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.003P   M11= 0            M12=-0.0394 P*m  (Element 52 in LA, 2nd upright from left)
Member 2:  N=-5.002P   M21= 0.0150    M22=-0.0238 P*m  (Element 56 in LA, 2nd upright from left)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 11.05kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 95.43kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 11.05kN:=

cN1 6.003:= Ncr1 cN1 Pcr⋅:= Ncr1 66.333 kN=

cN2 5.002:= Ncr2 cN2 Pcr⋅:= Ncr2 55.272 kN=

Pcrb 95.43 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 572.866 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 477.341 kN=

Axial capacity of upright Member 1 



As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.752 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600

foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.127 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 312.158 MPa=

foc1 foyz1:= foc1 312.158 MPa=

λc1
fyu

foc1
:= λc1 1.201=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 246.133 MPa=

Column capacity:

Nc1 Au fn1⋅:= Nc1 125.159 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on



Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.919 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 938.723 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 202.793 MPa=

foc2 foyz2:= foc2 202.793 MPa=

λc2
fyu

foc2
:= λc2 1.49=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 177.768 MPa=

Column capacity:

Nc2 Au fn2⋅:= Nc2 90.395 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=

Bending capacity (y-axis bending):



Mby Msuy:= Mby 6.941 kN m⋅=

Combined compression and flexural capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.003, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0394;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0394 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.153
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 9.593 kN=

check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.002, M21y*=0.0150*P*m and M22y*=cMy*P*m, cMy2=-0.0238;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.



cMy2 0.0238 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 9.883 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 9.593 kN= P2 9.883 kN=

Pmin min P1 P2,( ):= Pmin 9.593 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level.The maximum axial force is found in
the rightmost upright, while the maximum moment is found in the second upright from the left side
where the horizontal force is acting. The axial force (N) and bending moment (M) are nonlinear
functions of the applied force (P). 

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                         N*/(φc Nc) + M*y/ (φb Mby)< 1

where M*y is the maximum bending moment in the member considered.

The (N*, M*y) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - unbraced - PRFSA.xls

:=

Data

8

8.5

9

9.5

10

10.5

1.231

1.574

2.086

2.913

4.535

8.985

48.07

51.08

54.1

57.14

60.2

63.36

0.54

0.669

0.859

1.159

1.734

3.272

40.02

42.52

45.02

47.55

50.03

52.52

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 5..∈for:=

Element 52 (2nd left-most upright, between floor and 1st beam level):



LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 5..∈for:=

P

8

8.5

9

9.5

10

10.5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

kN= LHS1

0.649

0.732

0.842

1.003

1.292

2.034

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

Element 56 (2nd left-most upright, between 1st and 2nd beam levels):

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 5..∈for:=

P

8

8.5

9

9.5

10

10.5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

kN= LHS2

0.607

0.66

0.723

0.804

0.929

1.207

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

8 9 10 11 12
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 2:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS1nu

:= y2 LHS1nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 9 kN= y1 0.842=

Pu 9.489 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 10.0 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 9 kN=



4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 9.593 kN= PGNA 9.489 kN= PGMNIAc 9 kN=

The factored ultimate load (kN) determined on the basis of a GMNIAc analysis is % and % lower than
those (9.593kN and 9.489kN) obtained using LA and GNA analyses, respectively.
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section and torsion of uprights 

 



BD062 Steel Storage Racks

Design Example: Semi-braced rack - compact cross-section, torsion of uprights

RF10015 section for uprights and SHS for pallet beams. 

The uprights and pallet beam members are analysed and designed assuming local and
distortional buckling does not occur. 

Down-aisle displacements only, (2D behaviour), and torsion. The uprights are restrained
in the cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

The GMNIAc analysis accounts for warping torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Semi-braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The semi-braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2



respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAc analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for an semi-braced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties: Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.

Upright geometry:

Au 508.5mm2
:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=



rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the
floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical
uprights in the two lowest levels of the frame need to be determined.

For the uprights between the floor and the first beam level, the maximum axial force and bending
moment develop at node 177 in Element 196  of the 2nd right-most upright (here termed Member 1) at
the first beam level, as shown in Fig. 2.

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second right-most upright (containing Element 197). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.000P   M11= 0            M12=-0.0049 P*m  (Element 196 in LA, 2nd upright from right)
Member 2:  N=-5.000P   M21= 0.0005    M22=-0.0020 P*m  (Element 197 in LA, 2nd upright from right)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 22.73kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 89.71kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 22.73kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 136.38 kN=

cN2 5.000:= Ncr2 cN2 Pcr⋅:= Ncr2 113.65 kN=

Pcrb 89.71 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 538.26 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 448.55 kN=

Axial capacity of upright Member 1 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on



Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.807 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600

foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.059 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 307.892 MPa=

foc1 foyz1:= foc1 307.892 MPa=

λc1
fyu

foc1
:= λc1 1.209=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 244.084 MPa=

Column capacity:

Nc1 Au fn1⋅:= Nc1 124.117 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.98 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for



connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 882.104 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 200.712 MPa=

foc2 foyz2:= foc2 200.712 MPa=

λc2
fyu

foc2
:= λc2 1.497=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 176.065 MPa=

Column capacity:

Nc2 Au fn2⋅:= Nc2 89.529 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=

Bending capacity (y-axis bending):

Mby Msuy:= Mby 6.941 kN m⋅=

Combined compression and flexural capacity of upright members.  



AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0049;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0049 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.102
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 16.713 kN=

check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.000, M21y*=0.0005*P*m and M22y*=cMy*P*m, cMy2=-0.0020;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.

cMy2 0.0020 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=



P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 15.005 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 16.713 kN= P2 15.005 kN=

Pmin min P1 P2,( ):= Pmin 15.005 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level.The maximum axial force is found in
the rightmost upright, while the maximum moment is found in the second upright from the left side
where the horizontal force is acting. The axial force (N) and bending moment (M) are nonlinear
functions of the applied force (P). 

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                         N*/(φc Nc) + M*y/ (φb Mby)< 1

where M*y is the maximum bending moment in the member considered.

The (N*, M*y) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - semibraced - PRFSA.xls

:=

Data

12

14

16

0.095

0.153

0.202

72

84

96.01

0.051

0.091

0.122

60.01

70.01

80.01

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 2..∈for:=

Element 196 (2nd right-most upright, between floor and 1st beam level):



LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 2..∈for:=

P

12

14

16

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS1

0.698

0.821

0.942

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

Element 197 (2nd right-most upright, between 1st and 2nd beam level)::

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 2..∈for:=

P

12

14

16

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS2

0.797

0.935

1.071

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

10 15 20
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 1:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 14 kN= y1 0.935=

Pu 14.96 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 18.4 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 16.56 kN=



4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAc analyses are:

PLA 15.005 kN= PGNA 14.96 kN= PGMNIAc 16.56 kN=

The factored ultimate load (16.56kN) determined on the basis of a GMNIAc analysis is 9.39% and
9.66% higher than those (15.005kN and 14.96kN) obtained using LA and GNA analyses, respectively.
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BD062 Steel Storage Racks

Design Example: Fully braced rack - compact cross-section, torsion of uprights

RF10015 section for uprights and SHS for pallet beams. 

The uprights and pallet beam members are analysed and designed assuming local and
distortional buckling does not occur. 

Down-aisle displacements only, (2D behaviour), and torsion. The uprights are restrained
in the cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

The GMNIAc analysis accounts for warping torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Fully braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The fully braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The



uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2
respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAc analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for a fully braced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:
Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.Au 508.5mm2

:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=



As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the
floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical
uprights in the two lowest levels of the frame need to be determined.

For the uprights between the floor and the first beam level, the maximum axial force and bending
moment develop at node 177 in Element 196  of the 2nd right-most upright (here termed Member 1) at
the first beam level, as shown in Fig. 2.

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second right-most upright (containing Element 200). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.000P   M11= 0            M12=-0.0010 P*m  (Element 196 in LA, 2nd upright from right)
Member 2:  N=-5.000P   M21= 0.0005    M22=-0.0006 P*m  (Element 200 in LA, 2nd upright from right)

The elastic buckling load of the braced frame (P cr),as determined from an LBA analysis, is 99.55kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 95.56kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 99.55kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 597.3 kN=

cN2 5.000:= Ncr2 cN2 Pcr⋅:= Ncr2 497.75 kN=

Pcrb 95.56 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 573.36 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 477.8 kN=

Axial capacity of upright Member 1 



As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.751 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600

foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.128 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 312.215 MPa=

foc1 foyz1:= foc1 312.215 MPa=

λc1
fyu

foc1
:= λc1 1.201=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 246.161 MPa=

Column capacity:

Nc1 Au fn1⋅:= Nc1 125.173 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on



Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.918 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 939.626 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 202.824 MPa=

foc2 foyz2:= foc2 202.824 MPa=

λc2
fyu

foc2
:= λc2 1.49=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 177.794 MPa=

Column capacity:

Nc2 Au fn2⋅:= Nc2 90.408 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=



Bending capacity (y-axis bending):

Mby Msuy:= Mby 6.941 kN m⋅=

Combined compression and flexural capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0010;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0010 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.067
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 17.672 kN=

check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.000, M21y*=0.0005*P*m and M22y*=cMy*P*m, cMy2=-0.0006;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.



cMy2 0.0006 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 15.343 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 17.672 kN= P2 15.343 kN=

Pmin min P1 P2,( ):= Pmin 15.343 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop near the base of the right-most upright. In the GNA analysis,
the axial force (N) and bending moment (M) are nonlinear functions of the applied force (P).

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - braced - PRFSA.xls

:=

Data

10

12.5

15

20

9.4 10 3−
×

0.012

0.014

0.018

60

75

90

120

5.8 10 3−
×

7.3 10 3−
×

8.9 10 3−
×

0.012

50

62.5

75

100

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 3..∈for:=

Element 196 (2nd right-most upright, between floor and 1st beam level):



LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 3..∈for:=

P

10

12.5

15

20

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS1

0.565

0.707

0.848

1.131

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Element 200 (2nd right-most upright, between 1st and 2nd beam level)::

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 3..∈for:=

P

10

12.5

15

20

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS2

0.652

0.814

0.977

1.303

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

10 15 20
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 2:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 15 kN= y1 0.977=

Pu 15.347 kN= PGNA Pu:=

3  Design based on GMNIAc analysis

The ultimate load (P) obtained directly from a GMNIAc analysis is:

Pmax 21.1 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAc φ Pmax⋅:= PGMNIAc 18.99 kN=



4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAs analyses are:

PLA 15.343 kN= PGNA 15.347 kN= PGMNIAc 18.99 kN=

The factored ultimate load (18.99kN) determined on the basis of a GMNIAc analysis is 19.20% and
19.18% higher than those (15.343kN and 15.347kN) obtained using LA and GNA analyses,
respectively.
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BD062 Steel Storage Racks

Design Example: Unbraced rack - non-compact cross-section

RF10015 section for uprights and SHS for pallet beams.

The upright cross-section is prone to local and distortional buckling. Hence, it is
analysed using shell elements  in the GMNIA analysis and designed accounting for
these modes of buckling. The design is based on the Direct Strength Method.

The pallet beam members analysed and designed assuming local buckling does not
occur. 

Down-aisle displacements only, (2D behaviour). The uprights are restrained in the
cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Unbraced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The unbraced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2



respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAs analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for an unbraced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry: Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.

Au 508.5mm2
:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=



rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

Fig. 4: Buckling stress vs half-wavelength for RF11015 section, axial
compression, 1st and 2nd mode of buckling

Thinwall has been used to determined the local and distortional buckling stresses for
axial compresion and bending about the x- and y-axes. The buckling stress versus
buckle half-wavelength is shown in Fig. 4 for axial compression. The distortional
buckling minimum is found (as the second mode of buckling) at a half-wavelength of
1000 mm. 
The symmetry axis is the y-axis.

fol 933 MPa⋅:= fod 330 MPa⋅:=

folx 1035 MPa⋅:= fodx 450 MPa⋅:=

foly 946 MPa⋅:= fody 449 MPa⋅:=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the
floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical



uprights in the two lowest levels of the frame need to be determined.

For the uprights between the floor and the first beam level, the maximum bending moment develops at
node 48 in Element 52  of the 2nd left-most upright at the first beam level, as shown in Fig. 2.The
maximum axial force develops in Element 244 of the rightmost upright. The critical member (here
termed Member 1) can be shown to be the second left-most upright (containing element 52).

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second left-most upright (containing Element 56). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.003P   M11= 0            M12=-0.0394 P*m  (Element 52 in LA, 2nd upright from left)
Member 2:  N=-5.002P   M21= 0.0150    M22=-0.0238 P*m  (Element 56 in LA, 2nd upright from left)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 11.05kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 95.43kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 11.05kN:=

cN1 6.003:= Ncr1 cN1 Pcr⋅:= Ncr1 66.333 kN=

cN2 5.002:= Ncr2 cN2 Pcr⋅:= Ncr2 55.272 kN=

Pcrb 95.43 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 572.866 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 477.341 kN=

Axial capacity of upright Member 1 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.752 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600



foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.127 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 312.158 MPa=

foc1 foyz1:= foc1 312.158 MPa=

λc1
fyu

foc1
:= λc1 1.201=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 246.133 MPa=

Determine columns capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce1 Au fn1⋅:= Nce1 125.159 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=

λ l
Nce1

Nol
:=

λ l 0.514=

Ncl if λ l 0.776< Nce1, 1 0.15
Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce1⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 125.159 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=



Column capacity:

Nc1 min Nce1 Ncl, Ncd,( ):= Nc1 125.159 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.919 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 938.723 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 202.793 MPa=

foc2 foyz2:= foc2 202.793 MPa=

λc2
fyu

foc2
:= λc2 1.49=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 177.768 MPa=

Determine column capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce2 Au fn2⋅:= Nce2 90.395 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=



λ l
Nce2

Nol
:=

λ l 0.437=

Ncl if λ l 0.776< Nce2, 1 0.15
Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce2⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 90.395 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=

Column capacity:

Nc2 min Nce2 Ncl, Ncd,( ):= Nc2 90.395 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Since the cross-section is slender, local and distortional buckling need to be accounted for. This
is achieved using the Direct Strength Method.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=

  Overall buckling:

Mbey Msuy:= Mbey 6.941 kN m⋅=

Local buckling:

Moly Zuy foly⋅:= Moly 14.592 m kN=

λ ly
Mbey

Moly
:=

λ ly 0.69=

Mbly if λ ly 0.776< Mbey, 1 0.15
Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Mbey⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbly 6.941 kN m⋅=

Distortional buckling:

Myuy Zuy fyu⋅:= Myuy 6.941 kN m⋅=



Mody Zuy fody⋅:= Mody 6.926 kN m⋅=

λdy
Myuy

Mody
:=

λdy 1.001=

Mbdy if λdy 0.673< Myuy, 1 0.22
Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅ Myuy⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbdy 5.41 m kN=

Bending capacity (y-axis bending):

Mby min Mbey Mbly, Mbdy,( ):= Mby 5.41 kN m⋅=

Combined compression and flexural capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.003, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0394;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0394 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.155
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 9.3kN=



check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.002, M21y*=0.0150*P*m and M22y*=cMy*P*m, cMy2=-0.0238;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.

cMy2 0.0238 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 9.649 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 9.3kN= P2 9.649 kN=

Pmin min P1 P2,( ):= Pmin 9.3kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level.The maximum axial force is found in
the rightmost upright, while the maximum moment is found in the second upright from the left side
where the horizontal force is acting. The axial force (N) and bending moment (M) are nonlinear
functions of the applied force (P). 

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                         N*/(φc Nc) + M*y/ (φb Mby)< 1

where M*y is the maximum bending moment in the member considered.

The (N*, M*y) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.



Data
GNA - unbraced - PRFSA.xls

:=

Data

8
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9
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10.5
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4.535

8.985
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57.14

60.2

63.36

0.54

0.669

0.859
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1.734

3.272

40.02
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47.55

50.03
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 5..∈for:=

Element 52 (2nd left-most upright, between floor and 1st beam level):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 5..∈for:=

P

8

8.5

9

9.5

10

10.5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

kN= LHS1

0.705

0.803

0.937

1.135

1.497

2.441

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

Element 56 (2nd left-most upright, between 1st and 2nd beam levels):

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 5..∈for:=

P
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

kN= LHS2

0.632

0.691
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1.007

1.356

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
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0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 2:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS1nu

:= y2 LHS1nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 9 kN= y1 0.937=

Pu 9.159 kN= PGNA Pu:=



3  Design based on GMNIAs analysis

The ultimate load (P) obtained directly from a GMNIAs analysis is:

Pmax 8.1 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAs φ Pmax⋅:= PGMNIAs 7.29 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAs analyses are:

PLA 9.3kN= PGNA 9.159 kN= PGMNIAs 7.29 kN=

The factored ultimate load (7.29kN) determined on the basis of a GMNIAs analysis is 27.6% and
25.6% lower than those (9.3kN and 9.159kN) obtained using LA and GNA analyses, respectively.
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BD062 Steel Storage Racks

Design Example: Semi-braced rack - non-compact cross-section

RF10015 section for uprights and SHS for pallet beams.

The upright cross-section is prone to local and distortional buckling. Hence, it is
analysed using shell elements  in the GMNIA analysis and designed accounting for
these modes of buckling. The design is based on the Direct Strength Method.

The pallet beam members analysed and designed assuming local buckling does not
occur. 

Down-aisle displacements only, (2D behaviour). The uprights are restrained in the
cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Semi-braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The semi-braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The
uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2



respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAs analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for an semi-braced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties: Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.

Upright geometry:

Au 508.5mm2
:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=

As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=



rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

Fig. 4: Buckling stress vs half-wavelength for RF11015 section, axial
compression, 1st and 2nd mode of buckling

Thinwall has been used to determined the local and distortional buckling stresses for
axial compresion and bending about the x- and y-axes. The buckling stress versus
buckle half-wavelength is shown in Fig. 4 for axial compression. The distortional
buckling minimum is found (as the second mode of buckling) at a half-wavelength of
1000 mm. 
The symmetry axis is the y-axis.

fol 933 MPa⋅:= fod 330 MPa⋅:=

folx 1035 MPa⋅:= fodx 450 MPa⋅:=

foly 946 MPa⋅:= fody 449 MPa⋅:=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the
floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical
uprights in the two lowest levels of the frame need to be determined.



For the uprights between the floor and the first beam level, the maximum axial force and bending
moment develop at node 177 in Element 196  of the 2nd right-most upright (here termed Member 1) at
the first beam level, as shown in Fig. 2.

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second right-most upright (containing Element 197). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.000P   M11= 0            M12=-0.0049 P*m  (Element 196 in LA, 2nd upright from right)
Member 2:  N=-5.000P   M21= 0.0005    M22=-0.0020 P*m  (Element 197 in LA, 2nd upright from right)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 22.73kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 89.71kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 22.73kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 136.38 kN=

cN2 5.000:= Ncr2 cN2 Pcr⋅:= Ncr2 113.65 kN=

Pcrb 89.71 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 538.26 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 448.55 kN=

Axial capacity of upright Member 1 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.807 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600



foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.059 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 307.892 MPa=

foc1 foyz1:= foc1 307.892 MPa=

λc1
fyu

foc1
:= λc1 1.209=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 244.084 MPa=

Determine columns capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce1 Au fn1⋅:= Nce1 124.117 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=

λ l
Nce1

Nol
:=

λ l 0.511=

Ncl if λ l 0.776< Nce1, 1 0.15
Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce1⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 124.117 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=



Column capacity:

Nc1 min Nce1 Ncl, Ncd,( ):= Nc1 124.117 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.98 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 882.104 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 200.712 MPa=

foc2 foyz2:= foc2 200.712 MPa=

λc2
fyu

foc2
:= λc2 1.497=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 176.065 MPa=

Determine column capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce2 Au fn2⋅:= Nce2 89.529 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=



λ l
Nce2

Nol
:=

λ l 0.434=

Ncl if λ l 0.776< Nce2, 1 0.15
Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce2⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 89.529 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=

Column capacity:

Nc2 min Nce2 Ncl, Ncd,( ):= Nc2 89.529 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Since the cross-section is slender, local and distortional buckling need to be accounted for. This
is achieved using the Direct Strength Method.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=

  Overall buckling:

Mbey Msuy:= Mbey 6.941 kN m⋅=

Local buckling:

Moly Zuy foly⋅:= Moly 14.592 m kN=

λ ly
Mbey

Moly
:=

λ ly 0.69=

Mbly if λ ly 0.776< Mbey, 1 0.15
Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Mbey⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbly 6.941 kN m⋅=

Distortional buckling:

Myuy Zuy fyu⋅:= Myuy 6.941 kN m⋅=



Mody Zuy fody⋅:= Mody 6.926 kN m⋅=

λdy
Myuy

Mody
:=

λdy 1.001=

Mbdy if λdy 0.673< Myuy, 1 0.22
Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅ Myuy⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbdy 5.41 m kN=

Bending capacity (y-axis bending):

Mby min Mbey Mbly, Mbdy,( ):= Mby 5.41 kN m⋅=

Combined compression and flexural capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0049;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0049 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.102
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 16.515 kN=



check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.000, M21y*=0.0005*P*m and M22y*=cMy*P*m, cMy2=-0.0020;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.

cMy2 0.0020 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 14.947 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 16.515 kN= P2 14.947 kN=

Pmin min P1 P2,( ):= Pmin 14.947 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop at the first beam level.The maximum axial force is found in
the rightmost upright, while the maximum moment is found in the second upright from the left side
where the horizontal force is acting. The axial force (N) and bending moment (M) are nonlinear
functions of the applied force (P). 

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                         N*/(φc Nc) + M*y/ (φb Mby)< 1

where M*y is the maximum bending moment in the member considered.

The (N*, M*y) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.

Data
GNA - semibraced - PRFSA.xls

:=



Data

12

14

16

0.095

0.153

0.202

72

84

96.01

0.051

0.091

0.122

60.01

70.01

80.01

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 2..∈for:=

Element 196 (2nd right-most upright, between floor and 1st beam level):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 2..∈for:=

P

12

14

16

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS1

0.702

0.828

0.952

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

Element 197 (2nd right-most upright, between 1st and 2nd beam level)::

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 2..∈for:=

P

12

14

16

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

kN= LHS2

0.799

0.939

1.076

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

10 15 20
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 1:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 14 kN= y1 0.939=

Pu 14.891 kN= PGNA Pu:=



3  Design based on GMNIAs analysis

The ultimate load (P) obtained directly from a GMNIAs analysis is:

Pmax 16.4 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAs φ Pmax⋅:= PGMNIAs 14.76 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAs analyses are:

PLA 14.947 kN= PGNA 14.891 kN= PGMNIAs 14.76 kN=

The factored ultimate load (14.76kN) determined on the basis of a GMNIAs analysis is 1.2% and 0.9%
lower than those (14.947kN and 14.891kN) obtained using LA and GNA analyses, respectively.
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BD062 Steel Storage Racks

Design Example: Fully braced rack - non-compact cross-section

RF10015 section for uprights and SHS for pallet beams.

The upright cross-section is prone to local and distortional buckling. Hence, it is
analysed using shell elements  in the GMNIA analysis and designed accounting for
these modes of buckling. The design is based on the Direct Strength Method.

The pallet beam members analysed and designed assuming local buckling does not
occur. 

Down-aisle displacements only, (2D behaviour). The uprights are restrained in the
cross-aisle direction, thus failure occurs by flexure in the down-aisle direction and
torsion.

Kim Rasmussen & Benoit Gilbert

Fig. 1: Fully braced rack, rear-flange uprights, element numbers and critical buckling mode (LBA)



Fig. 2: Node numbers, and axial force and bending moment diagrams (LA)

Fig. 3: Buckling mode when all beam levels are restrained horizontally (LBA) 

Required: The fully braced steel storage rack shown in Fig. 1 consists of five bays, each 3.4m
wide, and six beam levels, equally spaced at 2m vertically. The rack is assumed to be
pin-ended at the base and all pallet beam to upright connections are assumed rigid.  The



uprights, beams and brace members are Grade 450 RF11015, SHS60x60x4 and CHS30x2
respectively. The rack uprights are subjected to equal forces (P) at all joints between uprights
and pallet beams. The horizontal forces representing the effect of out-of-plumb is taken as
0.003V in accordance with the draft Australian standard for Steel Storage Racks, where V is
the total vertical force acting at the particular beam level, (V=6P in this example).

The rack is to be designed to the draft Australian standard. The design will be based on LA,
GNA and GMNIAs analyses. The objective of this example is to compared the capacities
obtained using these three analysis approaches for a fully braced steel storage rack.

Units:

m 1L:= sec 1T:= kg 1M:= mm
m

1000
:= N 1M 1⋅

L

1T2
:= MPa

N

mm2
:= kN N 103

⋅:=

Section properties:

Upright geometry:
Note:   Au, Iux and Iuy  are the area and 2nd
moments of area of the chord. The y-axis is
the axis of symmetry.Au 508.5mm2

:=

Iux 4.460 105
⋅ mm4

⋅:= rux
Iux

Au
:= rux 29.616 mm= ymax 80 mm⋅ 31.21 mm⋅−:=

ymax 48.79 mm=

Iuy 8.484 105
⋅ mm4

⋅:= ruy
Iuy

Au
:= ruy 40.847 mm= xmax

110
2

mm⋅:=

Zux
Iux

ymax
:= Zuy

Iuy

xmax
:= xmax 55 mm=

Zux 9.141 103
× mm3

= Zuy 1.543 104
× mm3

=

J 381.4 mm4
⋅:= Iw 1.301 109

× mm6
⋅:= y0 67.57 mm⋅:=

ro1 rux
2 ruy

2
+ y0

2
+:= ro1 84.328 mm=

βx 151.7− mm⋅:=

Beam geometry:

bb 60mm:= tb 4mm:= rob 4 mm⋅:=

Ab 896mm2
:= Ib 4.707 105

⋅ mm4
⋅:= rib rob tb−:=

rb
Ib
Ab

:= rb 22.92 mm=

Spine bracing geometry:

ds 30mm:= ts 2mm:=



As 175.9mm2
:= Is 1.733605 104

⋅ mm4
⋅:=

rs
Is
As

:= rs 9.928 mm=

Material properties of all members, (cold-formed Grade 450 steel):

Upright fyu 450MPa:= Beam fyb 450MPa:= Brace fys 450MPa:=

E 210000MPa:= ν 0.3:= G
E

2 1 ν+( )⋅
:= G 8.077 104

× MPa=

Fig. 4: Buckling stress vs half-wavelength for RF11015 section, axial
compression, 1st and 2nd mode of buckling

Thinwall has been used to determined the local and distortional buckling stresses for
axial compresion and bending about the x- and y-axes. The buckling stress versus
buckle half-wavelength is shown in Fig. 4 for axial compression. The distortional
buckling minimum is found (as the second mode of buckling) at a half-wavelength of
1000 mm. 
The symmetry axis is the y-axis.

fol 933 MPa⋅:= fod 330 MPa⋅:=

folx 1035 MPa⋅:= fodx 450 MPa⋅:=

foly 946 MPa⋅:= fody 449 MPa⋅:=

1  Design based on LA analysis

Torsion plays a significant role in the design because the critical column buckling mode is
flexural-torsional. The effective lengths for torsion are determined in a manner consistent with the
modelled connection at the base of the uprights, which prevents torsion and warping, and the
connections between uprights and pallet beams, which prevent torsion and to a small extent warping.
Accordingly, the effective length for torsion will be assumed to be 0.7L for the uprights between the



floor and the first beam level, and will be assumed to be 0.9L for the uprights between the first and
second beam levels. Because of the different effective lengths for torsion, the capacities of the critical
uprights in the two lowest levels of the frame need to be determined.

For the uprights between the floor and the first beam level, the maximum axial force and bending
moment develop at node 177 in Element 196  of the 2nd right-most upright (here termed Member 1) at
the first beam level, as shown in Fig. 2.

For the uprights between the first and second beam levels, the critical member (Member 2) is the
second right-most upright (containing Element 200). 

The axial force and bending moments in the critical Members 1 and 2, as determined from an LA
analysis, are:

Member 1:  N=-6.000P   M11= 0            M12=-0.0010 P*m  (Element 196 in LA, 2nd upright from right)
Member 2:  N=-5.000P   M21= 0.0005    M22=-0.0006 P*m  (Element 200 in LA, 2nd upright from right)

The elastic buckling load of the unbraced frame (Pcr),as determined from an LBA analysis, is 99.55kN.
The buckling mode is shown in Fig. 1.

The elastic critical buckling load of the rack (Pcrb), as determined from an LBA analysis with all beam
levels prevented against sidesway, is 95.56kN. The corresponding buckling mode is shown in Fig. 3.
The axial load at this buckling load is found from Ncrb=cNPcrb (approximately).

Pcr 99.55kN:=

cN1 6.000:= Ncr1 cN1 Pcr⋅:= Ncr1 597.3 kN=

cN2 5.000:= Ncr2 cN2 Pcr⋅:= Ncr2 497.75 kN=

Pcrb 95.56 kN⋅:= Ncrb1 cN1 Pcrb⋅:= Ncrb1 573.36 kN=

Ncrb2 cN2 Pcrb⋅:= Ncrb2 477.8 kN=

Axial capacity of upright Member 1 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley1 π
E Iuy⋅

Ncrb1
⋅:= Ley1 1.751 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large warping restraint, be taken as 0.7 times the distance between the bracing
points. Note that in the FE analysis, the uprights are prevented to warp at the base and restrained
against torsion at the base and at the panel points. The warpint restraint is small at the panel points
between uprights and pallet beams. Thus, 

Lez1 0.7 2⋅ m⋅:= Lez1 1.4 m=

Determine the column strength according to AS/NZS4600



foy1
π

2
E⋅

Ley1

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy1 1.128 103

× MPa=

foz1
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez1
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz1 388.975 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz1
1

2 β⋅
foy1 foz1+ foy1 foz1+( )2 4 β⋅ foy1⋅ foz1⋅−−⎡

⎣
⎤
⎦⋅:= foyz1 312.215 MPa=

foc1 foyz1:= foc1 312.215 MPa=

λc1
fyu

foc1
:= λc1 1.201=

fn1 if λc1 1.5< 0.658
λ c1

2

fyu⋅,
0.977

λc1
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn1 246.161 MPa=

Determine columns capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce1 Au fn1⋅:= Nce1 125.173 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=

λ l
Nce1

Nol
:=

λ l 0.514=

Ncl if λ l 0.776< Nce1, 1 0.15
Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce1

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce1⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 125.173 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=



Column capacity:

Nc1 min Nce1 Ncl, Ncd,( ):= Nc1 125.173 kN=

Axial capacity of upright Member 2 

As per Clause 4.2.2.1 of the draft Standard, the effective length for flexural buckling may be
back-calculated from the critical bukling load of the corresponding fully braced rack, i.e.based on
Ncrb

Ley2 π
E Iuy⋅

Ncrb2
⋅:= Ley2 1.918 m=

As per Clause 4.2.2.3 of the draft Standard, the effective length for torsional buckling may, for
connections  providing large small restraint, be taken as 1.0 times the distance between the bracing
points. Note that in the FE analysis, the uprights are restrained against torsion at the panel points,
and there is a small degree of warping restraint since warping of the web (only) is restrained.
Accordingly, the effective length for torsion will be taken as,

Lez2 0.9 2⋅ m⋅:= Lez2 1.8 m=

Determine the column strength according to AS/NZS4600

foy2
π

2
E⋅

Ley2

ruy

⎛
⎜
⎝

⎞
⎟
⎠

2
:= foy2 939.626 MPa=

foz2
G J⋅

Au ro1
2

⋅
1

π
2

E⋅ Iw⋅

G J⋅ Lez2
2

⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:= foz2 238.671 MPa=

β 1
y0

ro1

⎛
⎜
⎝

⎞
⎟
⎠

2

−:=

foyz2
1

2 β⋅
foy2 foz2+ foy2 foz2+( )2 4 β⋅ foy2⋅ foz2⋅−−⎡

⎣
⎤
⎦⋅:= foyz2 202.824 MPa=

foc2 foyz2:= foc2 202.824 MPa=

λc2
fyu

foc2
:= λc2 1.49=

fn2 if λc2 1.5< 0.658
λ c2

2

fyu⋅,
0.977

λc2
2

fyu⋅,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= fn2 177.794 MPa=

Determine column capacity using Section 7 of AS/NZS4600 (Direct Strength Method): 

   Overall buckling:

Nce2 Au fn2⋅:= Nce2 90.408 kN=

Local buckling:

Nol Au fol⋅:= Nol 474.43 kN=



λ l
Nce2

Nol
:=

λ l 0.437=

Ncl if λ l 0.776< Nce2, 1 0.15
Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nol

Nce2

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Nce2⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncl 90.408 kN=

Distortional buckling:

Nyu Au fyu⋅:= Nyu 228.825 kN=

Nod Au fod⋅:= Nod 167.805 kN=

λd
Nyu

Nod
:=

λd 1.168=

Ncd if λd 0.561< Nyu, 1 0.25
Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Nod

Nyu

⎛
⎜
⎝

⎞
⎟
⎠

0.6

⋅ Nyu⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Ncd 150.542 kN=

Column capacity:

Nc2 min Nce2 Ncl, Ncd,( ):= Nc2 90.408 kN=

Flexural capacities of upright Members 1 and 2  

The upright members are bent about the symmetry y-axis. As such, they are ordinarily subject to
flexural-torsional buckling, involving flexure about the x-axis and torsion. However, in this example,
the uprights are assumed to be braced in the cross-aisle x-direction. The flexural capacity for
bending about the y-axis is thus the yield moment.

Since the cross-section is slender, local and distortional buckling need to be accounted for. This
is achieved using the Direct Strength Method.

Section capacity:

Msuy fyu Zuy⋅:= Msuy 6.941 kN m⋅=

  Overall buckling:

Mbey Msuy:= Mbey 6.941 kN m⋅=

Local buckling:

Moly Zuy foly⋅:= Moly 14.592 m kN=

λ ly
Mbey

Moly
:=

λ ly 0.69=

Mbly if λ ly 0.776< Mbey, 1 0.15
Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Moly

Mbey

⎛
⎜
⎝

⎞
⎟
⎠

0.4

⋅ Mbey⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbly 6.941 kN m⋅=

Distortional buckling:

Myuy Zuy fyu⋅:= Myuy 6.941 kN m⋅=



Mody Zuy fody⋅:= Mody 6.926 kN m⋅=

λdy
Myuy

Mody
:=

λdy 1.001=

Mbdy if λdy 0.673< Myuy, 1 0.22
Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

Mody

Myuy

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅ Myuy⋅,
⎡⎢
⎢⎣

⎤⎥
⎥⎦

:= Mbdy 5.41 m kN=

Bending capacity (y-axis bending):

Mby min Mbey Mbly, Mbdy,( ):= Mby 5.41 kN m⋅=

Combined compression and flexural capacity of upright members.  

AS/NSZS4600 specifies a linear interaction equation for determining the member strength under the
combined actions of compresion and bending, as follows:

                                     N*/(φc Nc) + CmyMy*/(φb Mbyαy) < 1

where My* is the maximum bending moment in the member considered, as determined from an LA
analysis. In this equation, moment amplification is accounted for through the terms C m and α,
where,

                                      α = 1-N*/Ne   =>   1/α = Ne/(Ne-N*)

In this equation, Ne is the flexural buckling load, as determined from an LBA analysis. It is seen
that the factor 1/α is, in fact, the same amplification factor as that used in Clause 3.3.9 of the draft
standard for steel storage racks.

AS/NZS4600 allows a value of Cm of 0.85 to be used for sway frames. However, to be consistent
with Clause 3.3.9 of the draft standard, Cm is (conservatively) taken as unity so that the
amplification factor becomes 1/α = Ne/(Ne-N*).

Member 1: 

We have N*=cN1*P, cN1=6.000, M11y*=0 and M12y*=cMy*P*m, cMy1=-0.0010;  and αn=1-N*/Ne.
The interaction equation  leads to a quadratic in P which has been solved using auxiliary
parameters AA and BB. Note that for unbraced frames, AS/NZS4600 specifies C m=0.85.

cMy1 0.0010 m⋅:=

Cm 1.0:=

φc 0.85:= φb 0.9:=

AA1
cN1

φc Nc1⋅ Pcr⋅
:= BB1

cN1

φc Nc1⋅

cMy1 Cm⋅

φb Mby⋅
+

1
Pcr

+:= BB1 0.067
kg

A2 m3 s4⋅⋅
=

P1
1

2 AA1⋅
BB1 BB1

2 4 AA1⋅−−⎛
⎝

⎞
⎠⋅:= P1 17.655 kN=



check
cN1 P1⋅

φc Nc1⋅

cMy1 P1⋅ Cm⋅

φb Mby⋅ 1
P1

Pcr
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

+:= check 1=

Member 2: 

We have N*=cN2*P, cN2=5.000, M21y*=0.0005*P*m and M22y*=cMy*P*m, cMy2=-0.0006;  and
αn=1-N*/Ne.  The interaction equation  leads to a quadratic in P which has been solved using
auxiliary parameters AA and BB.

cMy2 0.0006 m⋅:=

AA2
cN2

φc Nc2⋅ Pcr⋅
:= BB2

cN2

φc Nc2⋅

cMy2 Cm⋅

φb Mby⋅
+

1
Pcr

+:=

P2
1

2 AA2⋅
BB2 BB2

2 4 AA2⋅−−⎛
⎝

⎞
⎠⋅:= P2 15.335 kN=

Design capacity of storage rack based on LA analysis:

Considering the capacities of members 1 and 2, the maximum factored design load (P) is the
minimum of the determined values of P: 

P1 17.655 kN= P2 15.335 kN=

Pmin min P1 P2,( ):= Pmin 15.335 kN= PLA Pmin:=

2  Design based on GNA analysis

The maximum design actions develop near the base of the right-most upright. In the GNA analysis,
the axial force (N) and bending moment (M) are nonlinear functions of the applied force (P).

The axial member capacity (Nc) and bending capacity (Mby) are determined according to
AS/NSZS4600 using the same procedure as that detailed under LA analysis. However, the
interaction equation changes since the bending moment does not need amplification when
determined from a GNA analysis. It takes the linear form:

                                                 N*/(φc Nc) + M*/(φb Mb) < 1

where M* is the maximum bending moment in the member considered.

The (N*,M*) values computed from the GNA analysis are tabulated below for increasing values of
loading (P). For each set of values, the left-hand side of the interaction equation is computed.
When this exceeds unity, the capacity of the rack is exhausted. The corresponding value of P is
the factored capacity of the rack.



Data
GNA - braced - PRFSA.xls

:=

Data

10

12.5

15

20

9.4 10 3−
×

0.012

0.014

0.018

60

75

90

120

5.8 10 3−
×

7.3 10 3−
×

8.9 10 3−
×

0.012

50

62.5

75

100

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

P

ssi Datai 0, kN⋅←

ss

i 0 3..∈for:=

Element 196 (2nd right-most upright, between floor and 1st beam level):

LHS1

N Datai 2, kN⋅←

M Datai 1, kN⋅ m⋅←

ssi
N

φc Nc1⋅

M
φb Mby⋅

+←

ss

i 0 3..∈for:=

P

10

12.5

15

20

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS1

0.566

0.707

0.849

1.131

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Element 200 (2nd right-most upright, between 1st and 2nd beam level)::

LHS2

N Datai 4, kN⋅←

M Datai 3, kN⋅ m⋅←

ssi
N

φc Nc2⋅

M
φb Mby⋅

+←

ss

i 0 3..∈for:=

P

10

12.5

15

20

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

kN= LHS2

0.652

0.815

0.978

1.304

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

10 15 20
0

0.5

1

1.5

LHS1

LHS2

P

Determine the value of P producing a LHS of unity by interpolation:

nu 2:= x1 Pnu
:= x2 Pnu 1+:= y1 LHS2nu

:= y2 LHS2nu 1+:=

Pu
1 y1−

y2 y1−
x2 x1−( )⋅ x1+:= x1 15 kN= y1 0.978=

Pu 15.341 kN= PGNA Pu:=



3  Design based on GMNIAs analysis

The ultimate load (P) obtained directly from a GMNIAs analysis is:

Pmax 20.0 kN⋅:=

Assuming a resistance factor for the rack of φ=0.9, the factored ultimate load is obtained as: 

φ 0.9:=

PGMNIAs φ Pmax⋅:= PGMNIAs 18 kN=

4  Summary 

The factored ultimate loads (P) obtained on the basis of LA, GNA and GMNIAs analyses are:

PLA 15.335 kN= PGNA 15.341 kN= PGMNIAs 18 kN=

The factored ultimate load (18kN) determined on the basis of a GMNIAs analysis is 14.8% and 14.7%
higher than those (15.335kN and 15.341kN) obtained using LA and GNA analyses, respectively.
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APPENDIX 2 
 
 

Linear Analysis axial force and 
bending moment distributions 
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100x100x6 mm SHS upright – Unbraced rack – Axial force distribution 

 
 

100x100x6 mm SHS upright – Unbraced rack – Bending moment distribution 
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100x100x6 mm SHS upright – Semi-braced rack – Axial force distribution 

 
 

100x100x6 mm SHS upright – Semi-braced rack – Bending moment distribution 
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100x100x6 mm SHS upright – Fully-braced rack – Axial force distribution 

 
 

100x100x6 mm SHS upright – Fully-braced rack – Bending moment distribution 
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