Tubular Design Guide 20: Background and design basis

by

P.W. Key and A.A. Syam

first edition - 2014

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Tubular Design Guide 20: Background and design basis

Copyright © 2014 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2014 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Key, Peter W. Tubular Design Guide 20: Background and design basis / Peter W. Key, Arun A. Syam

ISBN 978 1 921476 29 7 (pbk.). Series: Structural tubular connection series. Includes bibliographical references. Steel, Structural—Standards - Australia. Structural engineering. Syam, Arun A. Australian Steel Institute. 624.1821021894

Also in this series: Tubular Design Guide 21: Bolted bracing connections Tubular Design Guide 22: Bolted bracing cleats Tubular Design Guide 23: Plate fitments Tubular Design Guide 24: Bolted planar connections Tubular Design Guide 25: Fully welded – Simple planar connections Tubular Design Guide 26: Fully welded – Gap planar connections Tubular Design Guide 27: Fully welded – Overlap planar connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

ii 👔

CONTENTS

5

		Page
Li	t of figures	iv
Li	t of tables	v
Pr	eface	vi
Ał	out the authors	vii
	knowledgements	viii
Л	Knowledgements	VIII
1	CONCEPT OF DESIGN GUIDES 1.1 Background	1 1
2	BASIS OF SSHS CONNECTION DESIG	GN
	TO AS 4100	2
	2.1 General considerations	2 2 3 5
	2.2 Forms of construction	3
	2.3 Connection design models	
	2.4 Connection characteristics	6
	2.5 Connection terminology	9
	2.6 Fatigue considerations2.7 Seismic considerations	10 11
		11
3	BACKGROUND TO SSHS	
	IMPLEMENTATION	12
	3.1 Advantages of SSHS for constructi	
	3.2 Australian production	13
	3.2.1 Background	13
	3.2.2 Cold-formed manufacturing	
	process	13
	3.2.3 Section availability	14
	3.2.4 Material properties	14
	3.3 International design context3.4 Australian design context	15 16
	3.5 International research	17
	3.6 Books and design manuals	18
	5.0 Dooks and design manuals	10
4	MATERIAL AND SECTION	
	PROPERTIES	19
	4.1 Properties of Australian SSHS	19
	4.1.1 Applicable standards	19
	4.1.2 Material properties	19
	4.2 Australian SSHS section sizes	20
	4.3 Design aspects related to Australian SSHS	24
	4.3.1 Influence of higher strength	21
	steel on SSHS connection	
	design	21
	4.3.2 Influence of yield to ultimate	21
	tensile strength ratio on SSH	IS
	connection design	21
	4.3.3 Design yield stress for	
	Australian produced SSHS	22
	4.3.4 Section classification	23
	4.4 Properties of plate materials	26
	4.4.1 Plate material	26

	442	Flat bar material	27
	7.7.2		Page
			- 3-
	4.4.3	Design yield stress for Australian produced plate	
		material	27
15	Polt t	/pes and bolting categories	27
		erties of bolts	20 29
	Weld		29 31
		erties of welds	33
		ational material sourcing	36
4.9		Background	36
		Material perspectives	36
		Product perspectives	37
		Bolt sourcing	37
		Welding consumables	38
		Product compliance	38
		Sample tests of imported	00
	4.5.7	product	39
	4.9.8	Third-party product	00
	4.0.0	certification	40
			40
DES	SIGN (CAPACITIES	42
		esign capacity	42
		design capacity-Fillet welds	44
		design capacity – Pre-	
		eered welds	47
		Stress distribution in profiled	
		fully welded SSHS connection	ns 47
	5.3.2	Prequalified fillet weld throat	
		thickness	47
	5.3.3	Weld matching	49
5.4	Other	connector types	54
5.5	Sectio	on design capacity	56
	5.5.1	Design section capacity in	
		axial tension	56
	5.5.2	Design section capacity in	
		axial compression	56
	5.5.3	Design section moment	
		capacity	57
	5.5.4	Design shear capacity of a	
		web	57
5.6		onent design capacities	59
		General	59
	5.6.2	Design capacity in axial tensi	
		for rectangular component	59
	5.6.3	Design shear capacity of	
		rectangular component	60
	5.6.4	Design moment capacity of	
		rectangular component	60
	5.6.5	Design capacity in axial	
		compression for rectangular	. .
		component	61
	5.6.6	Design capacity against ruptu	re
		due to block shear failure for	
		rectangular component	62

Ρ	a	q	е

6	DE	65	
	6.1	Minimum design actions	65

7 DETAILING AND STANDARDISATION	67
---------------------------------	----

- 7.1 Detailing of SSHS connections 67 7.1.1 Drainage and corrosion 67 7.1.2 Galvanizing 68 7.1.3 Recommended weld details 68
 - 7.1.4 General design considerations 69 71
- 7.2 Tolerances 7.3 Standardisation and rationalisation 72

8	TRUSS DESIGN CONSIDERATIONS	74
	8.1 Context	74
	8.1.1 Scope	74
	8.2 Classification of connections	75
	8.2.1 Connection classification	75
	8.3 Truss analysis	79

8.3.1 Analysis model configuration 79

				Page
	8.4	Truss	design	81
		8.4.1	Effective length for	
			compression members	81
		8.4.2	Guidance on member	
			selection	81
		8.4.3	Suggested truss design	
			procedure	82
	8.5	Truss	deflections	84
		8.5.1	Truss deflections	84
9			DESIGN GUIDES	85
	9.1	Plann	ed future design guides	85
10	REF	EREN	ICES	86

11 NOTATION AND ABBREVIATIONS 90

APPENDICES

А	SSHS section sizes	100
В	Limcon software	114

С ASI Design Guide comment form 115

LIST OF FIGURES

Page

Figure 2.1 Typical rigid connections 4 Figure 2.2 Typical semi-rigid connections 4 Figure 2.3 Typical simple connections 4 Figure 2.4 Moment-rotation characteristics of typical connections 6 Figure 2.5 Boundaries for stiffness calculation for beam-to-7 column connections Figure 2.6 Definition of connection elements 9 Figure 3.1 Typical cold-formed SSHS manufacturing process 14 Figure 4.1 Definition of element width for RHS flanges 25 Figure 4.2 Common structural weld types in AS 4100 31 Figure 5.1 Design throat thickness of fillet welds 46 Figure 5.2 Non-uniform stress distribution around connected face of SSHS brace member 47 Figure 5.3 Resolution of forces on throat of fillet weld 48 Figure 5.4 Connection configurations for checking weld matching 51 Figure 5.5 Lindapter hollobolt configuration 54 Figure 5.6 Huck ultra-twist process 54 Figure 5.7 Flowdrill process 55

Figure	5.8	Rectangular connection	
		component geometry	59
Figure	5.9	Rectangular component bent	
		about major axis	61
Figure	5.10	Rectangular component bent	
-		about minor axis	61
Figure	5.11	Examples of block shear	
•		failure in components	62
Figure	5.12	Block shear area in	
-		components	63
Figure	5.13	Block shear failure planes	
		inclined to the direction of the	
		applied load	64
Figure	7.1	Detailing of open and sealed	
		connections	67
Figure	7.2	Recommended weld details	69
Figure	7.3	Definition of gap and overlap	
		connections	70
Figure	7.4	Definition of bolt hole detailing	
		dimensions	72
Figure	8.1	Various types of truss	
		configuration	74
Figure		Various connection types	75
Figure	8.3	Examples of connection	
		classification	77
Figure	8.4	Classification of KT	
		connections	78
Figure	8.5	Planar truss connection	_
		modelling assumptions	80
Figure	8.6	Limits of noding eccentricity	80

Page

3 BACKGROUND TO SSHS 3.1 Advantages of SSHS for construction

Structural steel hollow sections (SSHS) have a long history of project implementation and an equally long history of development as a high performance building product. This pedigree is reflected in the fact that compared to other steel products, the worldwide consumption of welded steel tubular products is increasing in a market share sense if not an overall sense.

There are numerous reasons for the increased focus on and use of SSHS, and many speak towards the advantages of SSHS for production, supply and building and infrastructure construction. These include:

- 1. A world steel industry moving from the traditional production of hot-rolled sections and plate towards coil and strip production with attendant advantages of easier delivery from steel mill to manufacturing plant and the capacity to supply pre-coated (galvanized or primer-painted) product in some cases.
- 2. Improved manufacturing technology which facilitates enhancement of the overall performance of the product.
- 3. Structural steel design Standards which permit design of cold-formed SSHS sections along with hot-rolled sections are now available in most countries around the world (Refs. 1, 9, 12, 13, 63). These Standards have been continually improved, enabling the design of cold-formed SSHS members and connections to take advantage of the increased performance produced by the manufacturing process and inherent in the products.
- 4. The inherent structural efficiency of the hollow section shape, which places material at the maximum distance from the centroid of the section. Increased compression load capacity, torsional strength and stiffness and lateral stability per unit weight are direct advantages of the hollow section shape and lead to structures that, on a per unit area basis, are amongst the lightest that can be designed.
- 5. A per unit mass cost which, whilst usually higher than for hot-rolled open sections, has reduced relative to hot-rolled sections.
- 6. SSHS combines resistance to wind, water or wave loading with an architecturally stimulating and aesthetic shape, characteristics which combine to naturally lend themselves to exposure in landmark structures with open light designs. The smaller surface area than comparable structures with open sections and the absence of sharp corners and reduced ledges result in better corrosion protection in these applications.

Critical to the design of structures comprising SSHS framing is the efficient and sympathetic design and detailing of connections, often with no or minimal cleats or stiffening plates. Since the connection strength is influenced by the geometric properties of the members, the designer must understand the nuances of hollow section connection design and the consequent ever present conflict between member size and shape and the desirable elimination of ancillary stiffening/strengthening plates and the like. A strong appreciation of these issues is needed at conceptual design stage in order to ensure optimal design.

