9 Monorails

9.1 INTRODUCTION

The monorail crane is a common type of industrial crane which consists of a single beam with a hoist that can run along the beam. In the industries in which they are designed and used, monorail cranes are usually just called monorails. Generally the beams are doubly-symmetric I-beams and the trolley wheels run along the bottom flange as shown in Figure 9.1.

Monorails are often used in industrial buildings to provide a simple and economical method of transferring materials or equipment such as motors, pumps and valves to specific locations, mostly without the need for the operational flexibility and expense of an overhead gantry crane. The transfer is often from outside the building to inside and vice versa. Once inside the building, the item can be moved, if required, to any point within the building by an overhead crane. Some monorails have both curved and straight sections which allows more flexibility.

Monorails have a wide range of safe working load (SWL) from as low as 100 kg to in excess of 25 tonnes. Their operation ranges from fully manual using a simple manual chain hoist to fully electric with motors not only for hoisting, but also for travel along the beam. Most monorail trolleys for light loads have four wheels but those lifting heavier loads may have eight wheels.

It has been customary for the structural designers of monorail beams to assume that the wheel loads of four wheel trolleys are equal. However, with more recent trends in hoist design, two of the four wheels can carry more than 80% of the total with one wheel carrying more than 40%. This has serious implications for the assessment of flange thickness because the actual maximum wheel load can exceed the assumed wheel load by more than 60%.
It has been customary for the structural designers of monorail beams to assume that the wheel loads of four wheel trolleys are equal. However, with more recent trends in hoist design, two of the four wheels can carry more than 80% of the total with one wheel carrying more than 40%. This has serious implications for the assessment of flange thickness because the actual maximum wheel load can exceed the assumed wheel load by more than 60%.

9.2 STRUCTURAL DESIGN

9.2.1 General

Monorail beams are subjected to gravity loads and to small horizontal loads due to inadvertent off-vertical lifting. The applied loads cause not only global but also local transverse and longitudinal bending of the bottom flange as well as lateral bending of the web. The local and global flange stresses are coincident when the hoisted load is between two supports but not when the hoisted load is at the end of a cantilever.

Where the hoist must pass an intermediate or cantilever support, a monorail beam is necessarily supported by its top flange and so there can be no lateral restraint to the bottom flange. Hence the cross section at such a support will not be fully twist restrained and this can influence the buckling moment. The loads are also applied at or below the bottom flange and this has a beneficial effect on beam buckling. Deflections also need to be limited to ensure safe and satisfactory operation and travel of the hoist.

The principal issues for structural design are:

- Flexural-torsional buckling and hence member capacity
- Local flange bending in combination with global bending
- Adequate web thickness to deal with lateral web bending
- Controlling vertical deflections
- Controlling lateral deflections

AS 1418.18 [1] groups crane runway beams and monorails together and provides a concise set of rules for monorail design which accounts for these issues. The code allows two methods of design – either permissible stress design to AS 3990 [2] or limit states design to AS 4100 [3]. Unless a specific requirement of the code takes precedence, the code’s intention is that one method or the other is to be used exclusively. This book uses the limit states design method to AS 4100 except for the specific permissible stress requirements for flange and web thicknesses in AS 1418.18.

9.2.2 Loads

9.2.2.1 General

For the structural engineer, the determination of design loads for monorails is a different process from that for crane runway beams. In both cases for preliminary design, the designer generally needs to make assumptions about the type of crane or hoist and perhaps the manufacturer, and then make an allowance for the maximum loads. However, AS 1418 requires the crane manufacturer to provide the dynamically factored vertical and lateral wheel loads for crane runway beams, and a designer can extract these loads from catalogues or obtain them from a potential supplier. The code does not explicitly require the manufacturer
Design of Portal Frame Buildings
including Crane Runway Beams and Monorails
Fourth Edition

S.T. Woolcock
Director, Bonacci Group
Consulting Engineers

S. Kitipornchai
Honorary Professor, School of Civil Engineering
The University of Queensland

M.A. Bradford
Scientia Professor of Civil Engineering
The University of New South Wales

G.A. Haddad
Associate, Bonacci Group
Consulting Engineers

Published by
Australian Steel Institute
Level 13, 99 Mount Street
North Sydney NSW 2060
www.steel.org.au
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>ix</td>
<td>PREFACE</td>
<td>ix</td>
</tr>
<tr>
<td>xi</td>
<td>NOTATION</td>
<td>xi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Key Features of Portal Framed Buildings</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Design Issues</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>General Design Criteria</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Structural Design</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Grey Areas in Design</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Aims of This Book</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Limit States Design</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Design for the Strength Limit State</td>
<td>8</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Design for the Serviceability Limit State</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Design Examples</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Building</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Crane Runway Beams</td>
<td>11</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Monorails</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>LOADS</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Background</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Dead Loads</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Live Loads</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Wind Loads</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Regional Wind Speed</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Site Wind Speeds</td>
<td>17</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Terrain Category</td>
<td>18</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Design Wind Speeds and Pressures</td>
<td>19</td>
</tr>
<tr>
<td>2.4.5</td>
<td>External Pressures</td>
<td>21</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Internal Pressures</td>
<td>21</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Area Reduction Factor (K_a)</td>
<td>24</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Action Combination Factor (K_c)</td>
<td>24</td>
</tr>
<tr>
<td>2.4.9</td>
<td>Local Pressure Factors (K_l)</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Seismic Loads</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Load Combinations</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Strength Limit State</td>
<td>27</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Serviceability Limit State</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Design Example - Loads</td>
<td>28</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Dead Loads</td>
<td>28</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Live Loads</td>
<td>29</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Wind Loads</td>
<td>29</td>
</tr>
<tr>
<td>2.7.3.1</td>
<td>Basic Wind Data</td>
<td>29</td>
</tr>
<tr>
<td>2.7.3.2</td>
<td>External Wind Pressures</td>
<td>31</td>
</tr>
<tr>
<td>2.7.3.3</td>
<td>Internal Wind Pressures</td>
<td>33</td>
</tr>
<tr>
<td>2.7.3.4</td>
<td>Peak Local Pressures</td>
<td>35</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Seismic Loads</td>
<td>36</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Load Cases for Portal Frames</td>
<td>37</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Load Combinations</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>References</td>
<td>42</td>
</tr>
</tbody>
</table>
3 PURLINS & GIRTS .. 43
 3.1 General ... 43
 3.2 Roof and Wall Sheeting ... 44
 3.2.1 Rainwater and Temperature .. 44
 3.2.2 Cladding Capacity .. 44
 3.3 Purlin Spans or Frame Spacing ... 45
 3.4 Loads .. 45
 3.4.1 Base Loads ... 45
 3.4.2 Peak Local Pressures ... 46
 3.4.2.1 Summary of Code Provisions ... 46
 3.4.2.2 Aspect Ratio of Patches .. 47
 3.4.2.3 Contributing Widths ... 53
 3.4.3 Equivalent UDL’s For Peak Pressure .. 54
 3.5 Member Capacities .. 57
 3.5.1 Manufacturers’ Brochures ... 57
 3.5.1.1 Design Capacity Tables .. 57
 3.5.1.2 Bridging .. 57
 3.5.2 Manufacturers’ Software ... 58
 3.5.3 R-Factor Method ... 58
 3.5.4 Stramit Method .. 58
 3.6 Deflections ... 59
 3.7 Axial Loads .. 59
 3.8 Purlin and Girt Cleats .. 59
 3.9 Purlin and Girt Bolts .. 60
 3.10 Design Example – Purlins .. 60
 3.10.1 Methodology .. 60
 3.10.2 Select Purlin Spacing ... 61
 3.10.3 Outward Purlin Loading – Transverse Wind .. 62
 3.10.3.1 General .. 62
 3.10.3.2 Edge Zone 0 to 2600 mm from Eaves (TW- Excluding Fascia purlin) 62
 3.10.3.3 Fascia Purlin (Edge Zone 0 to 2600 mm from Eaves - TW) 69
 3.10.3.4 Edge Zone 2600 mm to 5200 mm from Eaves (TW) 72
 3.10.3.5 Zone 5200 mm to 8350 mm from Eaves (TW) ... 72
 3.10.3.6 Zone between 8350 mm from Eaves and the Ridge (TW) 73
 3.10.4 Outward Purlin Loading – Longitudinal Wind ... 73
 3.10.4.1 Edge Zone 0 to 5200 mm from Eaves (LW) ... 73
 3.10.4.2 Zone between 5200 mm from Eaves and the Ridge (LW) 76
 3.10.5 Check Inward Loading ... 80
 3.10.5.1 Zone 0 to 5200 mm from Eaves (LW) .. 80
 3.10.5.2 Zone between 5200 mm from Eaves and the Ridge (LW) 80
 3.10.6 Using Manufacturers’ Software ... 81
 3.10.7 R-Factor Method .. 81
 3.10.8 Purlin Summary .. 83
 3.11 Design Example – Girts ... 84
 3.11.1 Long Wall Girts ... 84
 3.11.1.1 Coefficients & Girt Spacing .. 84
 3.11.1.2 Outward Loading .. 84
 3.11.1.3 Inward Loading .. 88
 3.11.2 End Wall Girts with Span of 6250 mm ... 90
 3.11.2.1 Coefficients and Girt Spacing ... 90
 3.11.2.2 Outward Loading .. 90
 3.11.2.3 Inward Loading with 1700 mm Spacing .. 91
 3.11.3 Girt Summary .. 93
 3.12 References .. 94
4 FRAME DESIGN .. 95
4.1 Frame Design by Elastic Analysis 95
4.2 Computer Analysis 95
4.2.1 Load Cases 95
4.2.2 Methods of Analysis 96
4.2.3 Moment Amplification for First Order Elastic Analysis 97
4.3 Rafters 98
4.3.1 Nominal Bending Capacity M_{bc} in Rafters 98
4.3.1.1 Simplified Procedure 98
4.3.1.2 Alternative Procedure 99
4.3.2 Effective Length and Moment Modification Factors for Bending Capacity 100
4.3.2.1 General 100
4.3.2.2 Top Flange in Compression 100
4.3.2.3 Bottom Flange in Compression 101
4.3.3 Major Axis Compression Capacity N_{cx} 103
4.3.4 Minor Axis Compression Capacity N_{cy} 104
4.3.5 Combined Actions for Rafters 104
4.3.6 Haunches for Rafters 104
4.4 Portal Columns 104
4.4.1 General 104
4.4.2 Major Axis Compression Capacity N_{cx} 105
4.4.3 Minor Axis Compression Capacity N_{cy} 105
4.4.4 Nominal Bending Capacity M_{bc} in Columns 105
4.4.4.1 General 105
4.4.4.2 Inside Flange in Compression 105
4.4.4.3 Outside Flange in Compression 106
4.5 Combined Actions 106
4.5.1 General 106
4.5.2 In-Plane Capacity 106
4.5.2.1 In-Plane Section Capacity 106
4.5.2.2 In-Plane Member Capacity 107
4.5.3 Out-of-Plane Capacity 108
4.5.3.1 Compression Members 108
4.5.3.2 Tension Members 108
4.6 Central Columns 108
4.6.1 General 108
4.6.2 Effective Lengths for Axial Compression 109
4.6.2.1 Top Connection Pinned 109
4.6.2.2 Top Connection Rigid 110
4.6.3 Combined Actions with First Order Elastic Analysis 110
4.6.4 Combined Actions with Second Order Elastic Analysis 110
4.7 End Wall Frames 110
4.7.1 General 110
4.7.2 End Wall Columns 111
4.7.3 End Wall Columns to Rafter Connection 111
4.7.3.1 General 111
4.7.3.2 Continuous Rafter 111
4.7.3.3 Discontinuous Rafter 112
4.8 Rafter Bracing Design 113
4.8.1 General 113
4.8.2 Purlins as Braces 113
4.8.2.1 AS 4100 Approach 113
4.8.2.2 Eurocode Approach 114
4.8.2.3 Conclusions 117
4.8.3 Fly Braces 117
4.8.3.1 General 117
4.8.3.2 AS 4100 Approach 119
4.8.3.3 Eurocode Approach 120
iv

4.9 Deflections
4.9.1 General
4.9.2 Problems of Excessive Deflection
4.10 Design Example – Frame Design
4.10.1 Frame Analysis
4.10.1.1 Preliminary Design
4.10.1.2 Haunch Properties
4.10.1.3 Methods of Analysis
4.10.2 Frame Deflections
4.10.2.1 Sidesway Deflection
4.10.2.2 Rafter Deflection
4.10.3 Columns (460UB74)
4.10.3.1 Column Section Capacities
4.10.3.2 Column Member Capacities
4.10.3.3 Column Combined Actions
4.10.4 Rafters (360UB45)
4.10.4.1 Rafter Section Capacities
4.10.4.2 Rafter Member Capacities
4.10.4.3 Rafter Combined Actions
4.10.5 LIMSTEEL Results
4.10.6 End Wall Frames
4.10.7 End Wall Columns
4.10.7.1 Inside Flange in Tension (Inward Loading)
4.10.7.2 Inside Flange in Compression (Outward Loading)
4.10.7.3 Axial Compression Under Gravity Loads
4.10 References

5 FRAME CONNECTIONS ... 151
5.1 General
5.2 Bolted Knee and Ridge Joints
5.3 Column Bases
5.3.1 Holding Down Bolts
5.3.2 Base Plates
5.4 Design Example - Frame Connections
5.4.1 General
5.4.2 Knee Joint
5.4.2.1 General
5.4.2.2 Calculate Design Actions
5.4.2.3 Bottom Flange Connection
5.4.2.4 Top Flange Connection
5.4.2.5 Summary of Adopted Knee Connection Details
5.4.3 Ridge Connection
5.4.3.1 General
5.4.3.2 Calculate Design Actions
5.4.3.3 Carry Out Design Checks
5.4.3.4 Summary of Adopted Ridge Joint Details
5.4.4 Base Plates
5.4.5 End Wall Column Connections
5.4.5.1 General
5.4.5.2 Centre Column - Top Connection
5.4.5.3 Quarter-Point Columns – Top Connection
5.5 References

6 ROOF & WALL BRACING .. 215
6.1 General
6.2 Erection Procedure
6.3 Roof and Wall Bracing Forces
 6.3.1 Longitudinal Wind Forces 216
 6.3.2 Rafter or Truss Bracing Forces 216
 6.3.2.1 General 216
 6.3.2.2 Quantifying Bracing Forces 217
 6.4 Bracing Plane 219
 6.5 Bracing Layout 221
 6.6 Tension Rods 223
 6.7 Tubes and Angles in Tension 226
 6.8 Tubes in Compression 229
 6.9 End Connections for Struts and Ties 231
 6.9.1 Tubes 231
 6.9.1.1 Tubes in Tension 231
 6.9.1.2 Tubes in Compression 233
 6.9.2 Angles 235
 6.10 In-plane Eccentricity of Connection 235
 6.11 Design Example - Roof and Wall Bracing 235
 6.11.1 Longitudinal Forces 235
 6.11.1.1 General 235
 6.11.1.2 Forces due to Longitudinal Wind 236
 6.11.1.3 Forces due to Rafter Bracing 238
 6.11.1.4 Forces in Roof Bracing Members 238
 6.11.2 Ties or Tension Diagonals 238
 6.11.3 Struts 241
 6.11.4 Connections 244
 6.11.4.1 End Connections for Struts 244
 6.11.4.2 Bolts 246
 6.11.5 Side Wall Bracing 247
 6.12 References 268

7 FOOTINGS & SLABS ... 269
 7.1 General 269
 7.2 Design Uplift Forces 270
 7.3 Pad Footings 270
 7.4 Bored Piers 271
 7.4.1 General 271
 7.4.2 Resistance to Vertical Loads 273
 7.4.3 Resistance to Lateral Loads 274
 7.5 Holding Down Bolts 275
 7.5.1 General 275
 7.5.2 Design Criteria 276
 7.5.3 Grouting or Bedding 277
 7.5.4 Bolts in Tension 277
 7.5.4.1 Anchorage of Straight or Cogged Bars 277
 7.5.4.2 Cone Failure 278
 7.5.4.3 Embedment Lengths 279
 7.5.4.4 Minimum Edge Distance for Tensile Loads 280
 7.5.5 Bolts in Shear 282
 7.5.6 Corrosion 283
 7.6 Slab Design 283
 7.6.1 Design Principles 283
 7.6.2 Slab Thickness 284
 7.6.3 Joints 284
 7.6.3.1 General 284
 7.6.3.2 Sawn Joints 284
 7.6.3.3 Cast-In Crack Initiators 285
 7.6.3.4 Keyed Joints 286
 7.6.3.5 Dowelled Joints 287
 7.6.3.6 Joint Spacing and Reinforcement 287
7.7 Design Example – Footings
 7.7.1 Typical Portal Footings
 7.7.1.1 Bored Piers
 7.7.1.2 Compare Pad Footings
 7.7.2 End Wall Column Footings
 7.7.3 Main Portal Footings in Bracing Bays
 7.7.3.1 Corner Columns
 7.7.3.2 Column on Grid B2
 7.7.3.3 Columns on Grids A2, A8 and B8
 7.7.4 Holding Down Bolts for Portal Columns
 7.7.5 Holding Down Bolts for End Wall Columns
7.8 Design Example - Slab
 7.8.1 Design Criteria
 7.8.2 Slab Thickness Design
 7.8.3 Joints
 7.8.4 Reinforcement
7.9 References

8 CRANE RUNWAY BEAMS ... 297
 8.1 General 297
 8.2 Design Procedure for Crane Runways and Supporting Structure 299
 8.3 Design of Crane Runway Beams
 8.3.1 General 300
 8.3.2 Design Loads and Moments 300
 8.3.3 Member Capacity in Major Axis Bending ϕM_{ax}
 8.3.3.1 AS 4100 Beam Design Rules 301
 8.3.3.2 Proposed Monosymmetric Beam Design Rules 302
 8.3.4 Crane Runway Beam Deflections 305
 8.4 Design of Supporting Structure
 8.4.1 Portal Frame Structure 305
 8.4.2 Portal Frame Loads
 8.4.2.1 General 306
 8.4.2.2 Serviceability Wind Speeds 306
 8.4.3 Portal Frame Deflection Limits 307
 8.5 Design Example – Crane Runway Beams and Supporting Structure
 8.5.1 General 308
 8.5.2 Load Cases 309
 8.5.3 Crane Runway Beams
 8.5.3.1 Major Axis Bending Moments 311
 8.5.3.2 Minor Axis Bending Moments 312
 8.5.3.3 Combined Actions 315
 8.5.3.4 Check Major Axis Compound Section Moment Capacity ϕM_{cr}
 8.5.3.5 Deflections 315
 8.5.3.6 Vertical Shear Capacity 316
 8.5.3.7 Shear Buckling Capacity 316
 8.5.3.8 Shear and Bending Interaction 317
 8.5.3.9 Bearing Capacity of Crane Runway Beam 317
 8.5.3.10 Check Local Transverse Bending of Compression Flange 319
 8.5.3.11 Check Effect of Vertical Loads on Web 321
 8.5.3.12 Check Effect of Eccentric Rail Loading on Crane Runway Beam Web 321
 8.5.3.13 Check Effect of Web Buckling Under Vertical Loads 324
 8.5.3.14 Fatigue 325
 8.5.3.15 Check Effect of Eccentric Corbel Loading on Column 325
 8.5.4 Check Portal Frame
 8.5.4.1 General 327
 8.5.4.2 Loads 327
 8.5.4.3 Load Combinations 329
 8.5.4.4 Columns 329
9 MONORAILS ... 349
 9.1 Introduction 349
 9.2 Structural Design 350
 9.2.1 General 350
 9.2.2 Loads 350
 9.2.2.1 General 350
 9.2.2.2 Vertical Loads 351
 9.2.2.3 Lateral Loads 352
 9.2.2.4 Dynamic Factors 352
 9.2.3 Member Capacity in Major Axis Bending ϕM_{bx} 353
 9.2.3.1 General 353
 9.2.3.2 Segments Restrained at Both Ends 353
 9.2.3.3 Cantilevers 354
 9.2.4 Elastic Buckling Moment M_{oa} - Effective Length Approach 354
 9.2.4.1 General 354
 9.2.4.2 Typical Values of k_t, k_r and k_l 355
 9.2.5 Elastic Buckling Moment M_{ob} – Design by Buckling Analysis 357
 9.2.5.1 Advantages of Using Design by Buckling analysis 357
 9.2.5.2 Single and Continuous Spans 357
 9.2.5.3 Cantilevers 358
 9.2.6 Member Capacity in Major Axis Bending ϕM_{bc} for Curved Monorails 360
 9.2.7 Local Bottom Flange Bending 361
 9.2.8 Web Thickness 365
 9.2.9 Deflections 365
 9.3 Design Example I – 2 Tonne Single Span Monorail 366
 9.3.1 Description 366
 9.3.2 Design Loads 367
 9.3.3 Preliminary Sizing 367
 9.3.4 Check Flange Thickness 368
 9.3.5 Check Member Bending Capacity 369
 9.3.5.1 Design by Buckling Analysis 369
 9.3.5.2 Effective Length Method 370
 9.3.5.3 Comparison of Methods 370
 9.3.6 Web Thickness 371
 9.3.7 Deflections 371
 9.3.7.1 Vertical 371
 9.3.7.2 Horizontal 371
 9.3.8 Summary 372
 9.4 Design Example II – 1 Tonne Cantilever Monorail 372
 9.4.1 Description 372
 9.4.2 Design Load 373
 9.4.3 Preliminary Sizing 374
 9.4.4 Check Flange Thickness 374
 9.4.5 Check Member Bending Capacity 375
 9.4.5.1 Cantilever 375
 9.4.5.2 Back Span 379
 9.4.6 Check Web Thickness 380
 9.4.7 Deflections 380
 9.4.7.1 Vertical 380
 9.4.7.2 Horizontal 381
 9.4.8 Summary 381
 9.5 Design Example III – 5 Tonne Single Span Monorail 381
 9.5.1 Description 381
 9.5.2 Design Loads 382
 9.5.3 Preliminary Sizing 383
 9.5.4 Check Flange Thickness 383
9.5.5 Check Member Bending Capacity 385
9.5.6 Check Web Thickness 385
9.5.7 Deflections 386
 9.5.7.1 Vertical 386
 9.5.7.2 Horizontal 386
9.5.8 Summary 386
9.6 References 386
Appendix 9.1 Design Capacity Tables 389
Appendix 9.2 Background to Design Capacity Tables 398
Appendix 9.3 Effective Length Factors 401
Appendix 9.4 Hoist & Trolley Data 404
APPENDIX I DRAWINGS ... 409
APPENDIX II FRAME ANALYSIS OUTPUT .. 419
APPENDIX III LIMSTEEL OUTPUT ... 439
APPENDIX IV LIMCON OUTPUT .. 444
APPENDIX V OUTPUT FOR PORTAL FRAME WITH CRANE ... 461
SUBJECT INDEX ... 467