CHAPTER 9 CONNECTIONS

9.1 Introduction to Welded Connections

Welded connections between thin-walled cold-formed steel sections have become more common in recent years despite the lack of design guidance for sections of this type. Two publications based on work at Cornell University, U.S.A. (Ref. 9.1) and the Institute TNO for Building Materials and Building Structures in Delft, Netherlands (Ref. 9.2) have produced useful test results from which design formulae have been developed. The design rules in AS/NZS 4600 are based on those in the North American Specification (Ref. 1.14) which were developed from the Cornell tests. However, the more recent TNO tests add additional information to the original Cornell work and so the results and design formulae derived in both Refs 9.1 and 9.2 are covered in this chapter even though the design of welded connections in AS/NZS 4600 is based solely on Ref. 9.1. A recent publication by Teh and Hancock (Ref. 9.3) extends the Cornell research to high strength G450 steel to AS 1397-2001.

Sheet steels are normally welded with conventional equipment and electrodes. However, the design of the connections produced is usually different from that for hot-rolled sections and plate for the following reasons:

(a) Stress resisting areas are more difficult to define.
(b) Welds such as the arc spot and seam welds shown in Figs 9.1(c) and 9.1(d) are made through the welded sheet without any preparation.
(c) Galvanising and paint are not normally removed prior to welding.
(d) Failure modes are complex and difficult to categorise.

![Fusion weld types](image_url)

Fig. 9.1 Fusion weld types
The usual types of fusion welds used to connect cold-formed steel members are shown in Fig. 9.1, although butt welds may be difficult to produce in thin sheet and are therefore not as common as fillet, spot and seam welds. Arc spot and slot welds are commonly used to attach cold-formed steel decks and panels to their supporting frames. As for conventional structural welding, it is general practice to require that the weld materials should be matched at least to the strength level of the weaker member. Design rules for the five weld types shown in Figs 9.1(a), (b), (c), (d) and (e) are given as Clauses 5.2.2, 5.2.3, 5.2.4, 5.2.5 and 5.2.6 respectively in AS/NZS 4600.

Failure modes in welded sheet steel are often complicated and involve a combination of basic modes, such as sheet tearing and weld shear, as well as a large amount of out-of-plane distortion of the welded sheet. In general, fillet welds in thin sheet steel are such that the leg length on the sheet edge is equal to the sheet thickness and the other leg is often two to three times longer. The throat thickness (t_w) (in Fig 9.2(a)) is commonly larger than the thickness (t) of the sheet steel and hence ultimate failure is usually found to occur by tearing of the plate adjacent to the weld or along the weld contour. In most cases, yielding is poorly defined and rupture rather than yielding is a more reliable criterion of failure. Hence for the fillet welds tested at Cornell University and Institute TNO, the design formulae are a function of the tensile strength (f_u) of the sheet material and not the yield strength (f_y). This latter formulation has the added advantage that the yield strength of the cold-formed steel in the heat affected zone does not play a role in the design and hence does not need to be determined. Values for the tensile strength (f_u) are given in Table 2.1 of this book and Table 1.5 of AS/NZS 4600 to assist in the design of connections.

![Fig. 9.2 Transverse fillet welds](image-url)
As a result of the different welding procedures required for sheet steel, the specification of the American Welding Society for Welding Sheet Steel in Structures (Ref. 9.4) should be closely followed and has been referenced in AS/NZS 4600. The fact that a welder may have satisfactorily passed a test for structural steel welding does not necessarily mean that he can produce sound welds on sheet steel.

9.2 Fusion Welds

9.2.1 Butt Welds

In AS/NZS 4600, both the nominal tensile and compressive capacity, and the nominal shear capacity are specified for a butt weld. The nominal tensile or compressive capacity \(N_w \) is based on the yield strength used in design for the lower strength base steel and is given by

\[
N_w = l_w t_t f_y
\]

(9.1)

where \(l_w \) is the length of the full size of the weld, and \(t_t \) is the design throat thickness of the weld. A capacity reduction factor of 0.90 is specified and is the same as for a member.

The nominal shear capacity \(V_w \) is the lesser of the shear on the weld metal given by Eq. (9.2) and the shear on the base metal given by Eq. (9.3).

\[
V_w = l_w t_t (0.6 f_{uw})
\]

(9.2)

\[
V_w = l_w t_t \left[\frac{f_y}{\sqrt{3}} \right]
\]

(9.3)

where \(f_{uw} \) is the nominal tensile strength of the weld metal. A capacity reduction factor of 0.8 is used with Eq. (9.2), and a capacity reduction factor of 0.9 is used with Eq. (9.3) since it applies to the base metal. Eq. (9.2) applies to the weld metal and therefore has a lower capacity reduction factor than Eq. (9.3).

9.2.2 Fillet Welds subject to Transverse Loading

The Cornell test data for fillet welds, deposited from covered electrodes, was produced for the type of double lap joints shown in Fig. 9.2(b). These joints failed by tearing of the connected sheets along or close to the contour of the welds, or by secondary weld shear. Based on these tests, Eq. (9.4) was proposed to predict the connection strength.

\[
V_w = t l_w f_u
\]

(9.4)

where \(t \) is the sheet thickness, \(l_w \) is the length of weld perpendicular to the loading direction and \(f_u \) is the tensile strength of the sheet. The results of these tests are shown in Fig. 9.3(a) for all failure modes where they are compared with the prediction of Eq. (9.4). The values on the abscissa of Fig. 9.3(a) are \(2V_w \) since the joints tested were double lap joints. A capacity reduction factor (\(\phi \)) of 0.60 is specified for fillet welds subject to transverse loading. In Clause 5.2.3.3 of AS/NZS 4600, the lesser of \(t_1 l_w f_{u1} \) and \(t_2 l_w f_{u2} \) is used to check both sheets connected by a fillet weld where \(t_1, f_{u1} \) are for Sheet 1 and \(t_2, f_{u2} \) are for Sheet 2.

A series of tests was performed more recently at Institute TNO (Ref. 9.2) to determine the effect of single lap joints and the welding process on the strength of fillet weld connections. The joints tested are shown in Fig. 9.2(a) and were fabricated by the TIG process for uncoated sheet, and covered electrodes for galvanised sheet. The failure modes observed were inclination failure, as shown in Fig. 9.2(a), combined with weld shear, weld tearing and plate tearing. The mean test strengths \(N_m \) were found to be a function of the ratio of the weld length to sheet width in addition to the parameters in Eq. (9.2), and are given by:

\[
N_m = t l_w f_u \left(1 - 0.3 \frac{l_w}{b} \right)
\]

(9.5)
Design of Cold-Formed Steel Structures
(To Australian/New Zealand Standard
AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures
Dean
Faculty of Engineering & Information Technologies
University of Sydney

fourth edition - 2007
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE TO THE 4th EDITION</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Design Standards and Specifications for Cold-Formed Steel</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>History of Australian Cold-Formed Steel Structures Standards and USA Specifications</td>
<td>1</td>
</tr>
<tr>
<td>1.1.3</td>
<td>New Developments in the 2005 Edition</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Common Section Profiles and Applications of Cold-Formed Steel</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Manufacturing Processes</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Special Problems in the Design of Cold-Formed Sections</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Local Buckling and Post-local Buckling of Thin Plate Elements</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Propensity for Twisting</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Distortional Buckling</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Cold Work of Forming</td>
<td>14</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Web Crippling under Bearing</td>
<td>15</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Connections</td>
<td>15</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Corrosion Protection</td>
<td>16</td>
</tr>
<tr>
<td>1.4.8</td>
<td>Inelastic Reserve Capacity</td>
<td>16</td>
</tr>
<tr>
<td>1.4.9</td>
<td>Fatigue</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Loading Combinations</td>
<td>17</td>
</tr>
<tr>
<td>1.6</td>
<td>Limit States Design</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Computer Analysis</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>References</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>MATERIALS AND COLD WORK OF FORMING</td>
<td>22</td>
</tr>
<tr>
<td>2.1</td>
<td>Steel Standards</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical Stress-Strain Curves</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Ductility</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects of Cold Work on Structural Steels</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Corner Properties of Cold-Formed Sections</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Fracture Toughness</td>
<td>32</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Background</td>
<td>32</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Measurement of Critical Stress Intensity Factors</td>
<td>32</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens</td>
<td>34</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>References</td>
<td>36</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction to the Finite Strip Method</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Monosymmetric Column Study</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Unlipped Channel</td>
<td>38</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Lipped Channel</td>
<td>41</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Lipped Channel (Fixed Ended)</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Purlin Section Study</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Channel Section</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Z-Section</td>
<td>46</td>
</tr>
</tbody>
</table>
CHAPTER 6 WEBS

6.1 General 125

6.2 Webs in Shear 125
 6.2.1 Shear Buckling 125
 6.2.2 Shear Yielding 127

6.3 Webs in Bending 127

6.4 Webs in Combined Bending and Shear 129

6.5 Web Stiffeners 130

6.6 Web Crippling (Bearing) of Open Sections 130
 6.6.1 Edge Loading Alone 130
 6.6.2 Combined Bending and Edge Loading 133

6.7 Webs with Holes 134

6.8 Examples 136
 6.8.1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section Purlin 136
 6.8.2 Combined Bearing and Bending of Hat Section 138

6.9 References 139

CHAPTER 7 COMPRESSION MEMBERS 141

7.1 General 141

7.2 Elastic Member Buckling 141
 7.2.1 Flexural, Torsional and Flexural-Torsional Buckling 141
 7.2.2 Distortional Buckling 143

7.3 Section Capacity in Compression 143

7.4 Member Capacity in Compression 144
 7.4.1 Flexural, Torsional and Flexural-Torsional Buckling 144
 7.4.2 Distortional Buckling 146

7.5 Effect of Local Buckling 147
 7.5.1 Monosymmetric Sections 147
 7.5.2 High Strength Steel Box Sections 149

7.6 Examples 151
 7.6.1 Square Hollow Section Column 151
 7.6.2 Unlipped Channel Column 153
 7.6.3 Lipped Channel Column 157

7.7 References 164

CHAPTER 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING 165

8.1 Combined Axial Compressive Load and Bending - General 165

8.2 Interaction Equations for Combined Axial Compressive Load and Bending 166

8.3 Monosymmetric Sections under Combined Axial Compressive Load and Bending 167
 8.3.1 Sections Bent in a Plane of Symmetry 167
 8.3.2 Sections Bent about an Axis of Symmetry 169

8.4 Combined Axial Tensile Load and Bending 170

8.5 Examples 171
 8.5.1 Unlipped Channel Section Beam-Column Bent in Plane of Symmetry 171
 8.5.2 Unlipped Channel Section Beam-Column Bent about Plane of Symmetry 174
 8.5.3 Lipped Channel Section Beam-Column Bent in Plane of Symmetry 176

8.6 References 180
CHAPTER 9 CONNECTIONS

9.1 Introduction to Welded Connections
9.2 Fusion Welds
 9.2.1 Butt Welds
 9.2.2 Fillet Welds subject to Transverse Loading
 9.2.3 Fillet Welds subject to Longitudinal Loading
 9.2.4 Combined Longitudinal and Transverse Fillet Welds
 9.2.5 Flare Welds
 9.2.6 Arc Spot Welds (Puddle Welds)
 9.2.7 Arc Seam Welds

9.3 Resistance Welds
9.4 Introduction to Bolted Connections
9.5 Design Formulae and Failure Modes for Bolted Connections
 9.5.1 Tearout Failure of Sheet (Type I)
 9.5.2 Bearing Failure of Sheet (Type II)
 9.5.3 Net Section Tension Failure (Type III)
 9.5.4 Shear Failure of Bolt (Type IV)

9.6 Screw Fasteners and Blind Rivets
9.7 Rupture
9.8 Examples
 9.8.1 Welded Connection Design Example
 9.8.2 Bolted Connection Design Example

9.9 References

CHAPTER 10 DIRECT STRENGTH METHOD

10.1 Introduction
10.2 Elastic Buckling Solutions
10.3 Strength Design Curves
 10.3.1 Local Buckling
 10.3.2 Flange-distortional buckling
 10.3.3 Overall buckling

10.4 Direct Strength Equations
10.5 Examples
 10.5.1 Lipped Channel Column (Direct Strength Method)
 10.5.2 Simply Supported C-Section Beam

10.6 References

CHAPTER 11 STEEL STORAGE RACKING

11.1 Introduction
11.2 Loads
11.3 Methods of Structural Analysis
 11.3.1 Upright Frames - First Order
 11.3.2 Upright Frames - Second Order
 11.3.3 Beams

11.4 Effects of Perforations (Slots)
 11.4.1 Section Modulus of Net Section
 11.4.2 Minimum Net Cross-Sectional Area
 11.4.3 Form Factor (Q)

11.5 Member Design Rules
 11.5.1 Flexural Design Curves
 11.5.2 Column Design Curves
11.5.3 Distortional Buckling 227
11.6 Example 227
11.7 References 235

SUBJECT INDEX BY SECTION 236