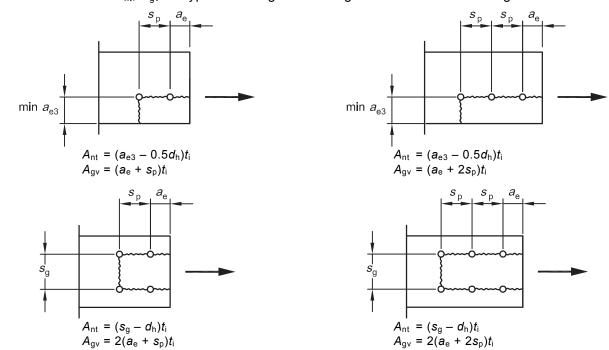
ERRATA TO STEEL CONSTRUCTION, VOLUME 43, NUMBER 2-MARCH 2010

Page 19 Please delete existing notation list and insert the following:

 $N_{\rm b} = n_{\rm b}k_{\rm r}(\phi V_{\rm en})$


- n_b = total number of bolts in bracing cleat
- k_r = reduction factor to account for the length of a bolted lap splice connection—given in Table 11 of Handbook 1 (Ref. 11) but generally 1.0 for normal connections

 $\varphi V_{en} = 0.9 a_{em} t_i f_{ui}$

- f_{ui} = tensile strength of cleat component (see Table 2)
- t_i = thickness of cleat component
- a_{em} = minimum distance from edge of a hole to the edge of the cleat measured in the direction of the axial tension force plus half the bolt diameter (d_f)
 - = [**a**_{e1}; **a**_{e2}]_{min}
- $a_{e1} = (a_e 1)$ (Figures 8(a), 8(b), 8(c))
- $a_{e2} = (s_p 0.5d_h 1)$ (Figures 8(a), 8(c))
- $d_{\rm h}$ = hole diameter $s_{\rm p}$ = bolt pitch
- a_e = distance from centre-line of hole to edge (Figures 8(a), 8(b), 8(c))

Errata to Steel Construction, Volume 43, Number 2—March 2010 (continued)

Page 20 Please delete existing Figure 10 and substitute Figure 10:

Specific formulae for A_{nt} , A_{gv} for typical bracing cleat configurations are shown in Figure 10.

FIGURE 10 DEFINITIONS OF GROSS SHEAR AREA AND NET TENSION AREA