Tubular Design Guide 25: Fully welded—Simple planar connections

by

P.W. Key and A.A. Syam

first edition - 2014

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Tubular Design Guide 25: Fully welded—Simple planar connections

Copyright © 2014 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2014 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Key, Peter W.

Tubular Design Guide 25: Fully welded—Simple planar connections / Peter W. Key, Arun A. Syam.

ISBN 978 1 921476 34 1 (pbk.).

Series: Structural steel tubular connection series. Includes bibliographical references. Steel, Structural—Standards - Australia. Structural engineering. Syam, Arun A. Australian Steel Institute.

624.1821021894

Also in this series:

Tubular Design Guide 20: Background and design basis Tubular Design Guide 21: Bolted bracing connections

Tubular Design Guide 22: Bolted bracing cleats

Tubular Design Guide 23: Plate fitments

Tubular Design Guide 24: Bolted planar connections

Tubular Design Guide 26: Fully welded—Gap planar connections Tubular Design Guide 27: Fully welded—Overlap planar connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

ii

CONTENTS

				Page					Page
							3.11.4	DESIGN CHECK NO. 4—	
List of Figures				iv				Design capacity for shear	3-18
List of Tables				V			3.11.5	DESIGN CHECK NO. 5—	
Preface				vi				Design capacity of welds to	
About the Authors			vii				SSHS member	3-20	
Acknowledgements			viii				n example	3-24	
							_	capacity tables	3-28
1			OF DESIGN GUIDES	1-1		3.14	Refere	ences	3-39
	1.1 Ba	_		1-1	4	T V	ANDV	CONNECTIONS	1 1
	1.2 In	ıcıuae	d connections	1-2	4			CONNECTIONS otion of connection	4-1 4-1
2 1	TECH	TECHNICAL BASIS						I detailing of connection	4-1
_			cal background	2-1 2-1				ng considerations	4-3
			Technical basis	2-1				ound information	4-4
			Validity limits	2-1			4.4.1	Recent research	4-4
			Design capacity factors	2-4			4.4.2	Relevant international codes	
			ies of connection elements	2-5				and specifications	4-5
		.2.1	General	2-5		4.5	Compli	iance with AS 4100	
		.2.2	Component material yield					ements	4-7
			stress	2-5		4.6	Basis o	of design model	4-8
	2.	.2.3	SSHS material properties	2-6		4.7	Calcula	ation of design actions	4-10
	2.	.2.4	Design yield stress for			4.8	Recom	mended design model—	
			Australian produced SSHS	2-7				ction notation	4-11
	2.	.2.5	Design capacity of welds	2-7		4.9		mended design model—	
		.2.6	Design capacity of bolts	2-8				of validity	4-12
	2.3 R	efere	nces for Sections 1 and 2	2-9		4.10		nmended design model—	
				3-1				ary of design checks	4-14
3		MITRED KNEE				4.11		nmended design model—	4.45
			otion of connection	3-1			Genera		4-15
			detailing of connection	3-2			4.11.1	DESIGN CHECK NO. 1—	1 15
			g considerations	3-3			1112	Detailing requirements DESIGN CHECK NO. 2—	4-15
		-	ound information	3-4			4.11.2	Validity limits and minimum	
			Recent research Relevant international	3-4				design actions	4-16
	3.	.4.2	codes and specifications	3-5			4 11 3	DESIGN CHECK NO. 3—	7 10
	35 C	omnli	ance with AS 4100	3 3				Design capacity due to	
		•	ments	3-6				chord face plastification	4-17
			f design model	3-7			4.11.4	DESIGN CHECK NO. 4—	
			ition of design actions	3-8				Design capacity due to chore	d side
			mended design model—					wall failure	4-19
			ction notation	3-9			4.11.5	DESIGN CHECK NO. 5—	
	3.9 R	ecom	mended design model—					Design capacity due to	
	Li	imits (of validity	3-10				chord punching shear	4-22
	3.10 R	Recom	mended design model—				4.11.6	DESIGN CHECK NO. 6—	
			ary of design checks	3-12				Design capacity due to local	
			mended design model—					yielding of brace member	4-24
		Senera		3-13			4.11.7	DESIGN CHECK NO. 7—	
	3.	.11.1	DESIGN CHECK NO. 1—					Design capacity of weld	4.00
		44.0	Detailing requirements	3-13			1110	to SSHS member	4-26
	3.	.11.2	DESIGN CHECK NO. 2—				4.11.8	DESIGN CHECK NO. 8—	
			Validity limits and minimum	2 4 4				Design capacity due to chord shear	4-28
	2	11 2	design actions DESIGN CHECK NO. 3—	3-14			<u>4</u> 11 0	DESIGN CHECK NO. 9—	-1 -20
	3.	.11.3	Design capacity for combine	Ч			7.11.3	Design capacity due to	
			moment and axial load	u 3-15				chord face plastification	4-29
			orriorit aria axial load	0 10					

	Page		Page
4.11.10 DESIGN CHECK NO. 10— Design capacity due to		4.11.14 DESIGN CHECK NO. 14— Combined axial load and	
chord side wall failure	4-31	moment interaction	4-40
4.11.11 DESIGN CHECK NO. 11—		4.12 Design example	4-41
Design capacity due to		4.13 Design capacity tables	4-47
chord punching shear	4-34	4.14 References	4-55
4.11.12 DESIGN CHECK NO. 12—			
Design capacity due to local yielding of brace member	4-35	5 NOTATION AND ABBREVIATIONS	5-1
4.11.13 DESIGN CHECK NO. 13—		APPENDICES	
Design capacity of weld to		A—Limcon design example output	6-1
SSHS member	4-37	B—ASI Design Guide 25	
		Comment form	7-1

LIST OF FIGURES

		Page			Page
Figure 1.1	Connections included in this Design Guide	1-2	Figure 3.6	Force resolution for weld design of mitred knee	3-22
Figure 2.1	Definition of element width		Figure 3.7	Definition of weld dimensions	
	for RHS flanges	2-3		for CHS member	3-23
Figure 3.1	Typical fully welded mitred knee	Э	Figure 3.8	Design example configuration	3-24
	connection configurations	3-1	Figure 4.1	Typical T, Y and X connection	
Figure 3.2	Typical detailing of fully welded			configurations	4-1
	mitred knee connection	3-2	Figure 4.2	Typical detailing of T and Y	
Figure 3.3	Design action effects—			connections	4-2
	Mitred knee connection	3-8	Figure 4.3	Design actions at the	
Figure 3.4	Notation for welded mitred			connection	4-10
	knee design model	3-9	Figure 4.4	Notation for Y, T and X	
Figure 3.5	For RHS subject to major and			Connections	4-11
	minor axis bending in 90 ⁰		Figure 4.5	Definition of weld dimensions	
	unstiffened mitred knee			for CHS member	4-39
	connections	3-17	Figure 4.6	Design example configuration	4-41

LIST OF TABLES

	Page		Page
Table 2.1 Rationalised validity limits for		Table 3.13.2 Moment capacity of mitred	
SSHS plate fitments	2-2	knee connection CHS – Grade 350	3-30
Table 2.2 Section slenderness limits to		Table 3.13.3 Moment capacity of mitred	
AS 4100 and Eurocode 3	2-3	knee connection SHS – Grade 350	3-31
Table 2.3 Section slenderness limits to		Table 3.13.4 Moment capacity of mitred	
Eurocode 3 for design grades		knee connection SHS – Grade 450	3-33
(f_y) 250, 350 and 450 MPa	2-4	Table 3.13.5 Moment capacity of mitred	
Table 2.4 Minimum plate material		knee connection RHS – Grade 350	3-35
properties to AS/NZS 3678	2-5	Table 3.13.6 Moment capacity of mitred	
Table 2.5 Strength of flat bars to		knee connection RHS – Grade 450	3-37
AS/NZS 3679.1 Grade 300	2-6	Table 4.1 Rationalised validity limits for	
Table 2.6 Minimum SSHS material		T, Y and X connections	4-12
properties to AS/NZS 1163	2-6	Table 4.2 Maximum d_i/t_i ratios for CHS	
Table 2.7 Design yield stress for SSHS		in compression	4-13
related failure modes for SSHS to		Table 4.13.1 Design capacity of T	
AS/NZS 1163	2-7	connection CHS – Grade 250	4-47
Table 2.8 Strength limit state design		Table 4.13.2 (Part 1 of 2) Design capacity	
capacities of equal leg fillet welds		of T connection CHS – Grade 350	4-48
per unit length Category SP,		Table 4.13.2 (Part 2 of 2) Design capacity	
$\phi = 0.8$, $k_r = 1.0$, material thickness		of T connection CHS – Grade 350	4-49
≥3 mm	2-8	Table 4.13.3 (Part 1 of 2) Design capacity	
Table 2.9 Strength limit state high strength		of T connection SHS – Grade 350	4-50
structural bolts 8.8/S, 8.8/TB, 8.8/TF		Table 4.13.3 (Part 2 of 2) Design capacity	
bolting categories ($f_{uf} = 830 \text{ MPa}$)	2-8	of T connection SHS – Grade 350	4-51
Table 3.1 Rationalised validity limits for		Table 4.13.4 (Part 1 of 2) Design capacity	
welded mitred knee connection	3-10	of T connection SHS – Grade 450	4-52
Table 3.13.1 Moment capacity of mitred kne	ee	Table 4.13.4 (Part 2 of 2) Design capacity	
connection CHS – Grade 250	3-29	of T connection SHS – Grade 450	4-53

PREFACE

This new series of connection publications by the Australian Steel Institute (ASI) covering design capacity tables, theory and design of individual structural steel hollow section ('tubular') member connections will be known as the Structural Steel Tubular Connections Series: 1st edition 2013 ('Tubular Connection Series'). The Tubular Connection Series details the method of design and provides design capacity tables and detailing parameters for a range of tubular connections commonly used in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabrication and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. The Tubular Connection Series is written in the same format as and extends the range of the existing 'Structural Steel Connection Series Parts 1 and 2' published by ASI commencing 2007. Each book in the new Tubular Connection Series is numbered as a continuation from the existing series and hence this current book is referred to as 'Tubular Design Guide 25' (TDG25). The Tubular Connection Series replaces and enhances an AISC publication released in 1996 and titled 'Design of structural steel hollow section connections' (often referred to as the 'Blue Book'). With significant international research undertaken in the interim period and new and refined design models available, together with improvements in the performance of Australian produced structural steel hollow sections (SSHS), the time was appropriate to revise and update the Blue Book.

Tubular Design Guide 25 on fully welded simple planar connections covers connections of single brace members into chord members where there is no or limited interaction with adjacent brace members. The format and intent of the technical components of TDG25 is to provide sufficient technical basis to allow TDG25 to be a self-standing document, but at the same time, where substantive background technical basis is required, the reader may refer back to both Tubular Design Guide 20 (TDG20) and Handbook 1 of the existing Structural Steel Connection Series.

This has been achieved through extensive local and international literature reviews using ASI's close association with like organisations and searching the wealth of material contained in the ASI Library (the largest steel design library in the Southern Hemisphere). This process consolidated industry best practice, references and research papers. TDG25, in conjunction with TDG20 and Handbook 1, formulates the design models and procedures for the assessment of fully welded connections between a single SSHS brace member and an SSHS chord member.

Following on from the existing Structural Steel Connection Series, the new Tubular Connection Series format, with separate design guides for individual connection types or groupings related to similar functions, is intended to facilitate addition to, or revision of, connection model theory using relevant new local or international research. Connection models developed follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection design capacity assessment. Combined with a worked example and accompanying design capacity tables, each connection model provides a self-standing solution for the design engineer.

Engineering Systems has worked closely with the ASI to further develop their existing Limcon software as the companion program for this new Tubular Connection Series. The latest version of Limcon (V3.6) fully implements the new connection design models and was employed in checking the design tables. The Limcon output for one or more of the worked examples is included in an appendix to each design guide for each connection design type. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the design capacity tables provided in the Tubular Connection Series.

The existing Structural Steel Connection Series included comment/feedback forms. In the current series, these are replaced by a recently developed web based eForum facility. Every publication, seminar and talk that ASI sponsors has or will have a corresponding thread on the ASI eForum. Users are encouraged to log into the eForum and provide feedback on this current series. The eForum is located off our website at http://steel.org.au/forum/

P.W. Key A.A. Syam

