Tubular Design Guide 20: Background and design basis

by

P.W. Key and A.A. Syam

first edition - 2014

AUSTRALIAN STEEL INSTITUTE (ABN)/ACN (94) 000 973 839

Tubular Design Guide 20: Background and design basis

Copyright © 2014 by AUSTRALIAN STEEL INSTITUTE

Published by: AUSTRALIAN STEEL INSTITUTE

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of Australian Steel Institute.

Note to commercial software developers: Copyright of the information contained within this publication is held by Australian Steel Institute (ASI). Written permission must be obtained from ASI for the use of any information contained herein which is subsequently used in any commercially available software package.

FIRST EDITION 2014 (LIMIT STATES)

National Library of Australia Cataloguing-in-Publication entry:

Key, Peter W. Tubular Design Guide 20: Background and design basis / Peter W. Key, Arun A. Syam

ISBN 978 1 921476 29 7 (pbk.). Series: Structural tubular connection series. Includes bibliographical references. Steel, Structural—Standards - Australia. Structural engineering. Syam, Arun A. Australian Steel Institute. 624.1821021894

Also in this series: Tubular Design Guide 21: Bolted bracing connections Tubular Design Guide 22: Bolted bracing cleats Tubular Design Guide 23: Plate fitments Tubular Design Guide 24: Bolted planar connections Tubular Design Guide 25: Fully welded – Simple planar connections Tubular Design Guide 26: Fully welded – Gap planar connections Tubular Design Guide 27: Fully welded – Overlap planar connections

Disclaimer: The information presented by the Australian Steel Institute in this publication has been prepared for general information only and does not in any way constitute recommendations or professional advice. While every effort has been made and all reasonable care taken to ensure the accuracy of the information contained in this publication, this information should not be used or relied upon for any specific application without investigation and verification as to its accuracy, suitability and applicability by a competent professional person in this regard. The Australian Steel Institute, its officers and employees and the authors and editors of this publication do not give any warranties or make any representations in relation to the information provided herein and to the extent permitted by law (a) will not be held liable or responsible in any way; and (b) expressly disclaim any liability or responsibility for any loss or damage costs or expenses incurred in connection with this publication by any person, whether that person is the purchaser of this publication or not. Without limitation, this includes loss, damage, costs and expenses incurred as a result of the negligence of the authors, editors or publishers.

The information in this publication should not be relied upon as a substitute for independent due diligence, professional or legal advice and in this regards the services of a competent professional person or persons should be sought.

ii 👔

CONTENTS

5

		Page
Li	t of figures	iv
Li	t of tables	v
Pr	eface	vi
Ał	out the authors	vii
	knowledgements	viii
Л	Knowledgements	VIII
1	CONCEPT OF DESIGN GUIDES 1.1 Background	1 1
2	BASIS OF SSHS CONNECTION DESIG	GN
	TO AS 4100	2
	2.1 General considerations	2 2 3 5
	2.2 Forms of construction	3
	2.3 Connection design models	
	2.4 Connection characteristics	6
	2.5 Connection terminology	9
	2.6 Fatigue considerations2.7 Seismic considerations	10 11
		11
3	BACKGROUND TO SSHS	
	IMPLEMENTATION	12
	3.1 Advantages of SSHS for constructi	
	3.2 Australian production	13
	3.2.1 Background	13
	3.2.2 Cold-formed manufacturing	
	process	13
	3.2.3 Section availability	14
	3.2.4 Material properties	14
	3.3 International design context3.4 Australian design context	15 16
	3.5 International research	17
	3.6 Books and design manuals	18
	5.0 Dooks and design manuals	10
4	MATERIAL AND SECTION	
	PROPERTIES	19
	4.1 Properties of Australian SSHS	19
	4.1.1 Applicable standards	19
	4.1.2 Material properties	19
	4.2 Australian SSHS section sizes	20
	4.3 Design aspects related to Australian SSHS	24
	4.3.1 Influence of higher strength	21
	steel on SSHS connection	
	design	21
	4.3.2 Influence of yield to ultimate	21
	tensile strength ratio on SSH	IS
	connection design	21
	4.3.3 Design yield stress for	
	Australian produced SSHS	22
	4.3.4 Section classification	23
	4.4 Properties of plate materials	26
	4.4.1 Plate material	26

	442	Flat bar material	27
	7.7.2		Page
			- 3-
	4.4.3	Design yield stress for Australian produced plate	
		material	27
15	Polt ty	/pes and bolting categories	27
		erties of bolts	20 29
	Weld		29 31
		erties of welds	33
		ational material sourcing	36
4.9		Background	36
		Material perspectives	36
		Product perspectives	37
		Bolt sourcing	37
		Welding consumables	38
		Product compliance	38
		Sample tests of imported	00
	4.5.7	product	39
	4.9.8	Third-party product	00
	4.0.0	certification	40
			40
DES	SIGN (CAPACITIES	42
		esign capacity	42
		design capacity-Fillet welds	44
		design capacity – Pre-	
		eered welds	47
		Stress distribution in profiled	
		fully welded SSHS connection	ns 47
	5.3.2	Prequalified fillet weld throat	
		thickness	47
	5.3.3	Weld matching	49
5.4	Other	connector types	54
5.5	Sectio	on design capacity	56
	5.5.1	Design section capacity in	
		axial tension	56
	5.5.2	Design section capacity in	
		axial compression	56
	5.5.3	Design section moment	
		capacity	57
	5.5.4	Design shear capacity of a	
		web	57
5.6		onent design capacities	59
		General	59
	5.6.2	Design capacity in axial tensi	
		for rectangular component	59
	5.6.3	Design shear capacity of	
		rectangular component	60
	5.6.4	Design moment capacity of	
		rectangular component	60
	5.6.5	Design capacity in axial	
		compression for rectangular	. .
		component	61
	5.6.6	Design capacity against ruptu	re
		due to block shear failure for	
		rectangular component	62

Ρ	a	q	е

6	DE	65	
	6.1	Minimum design actions	65

7 DETAILING AND STANDARDISATION	67
---------------------------------	----

- 7.1 Detailing of SSHS connections 67 7.1.1 Drainage and corrosion 67 7.1.2 Galvanizing 68 7.1.3 Recommended weld details 68
 - 7.1.4 General design considerations 69 71
- 7.2 Tolerances 7.3 Standardisation and rationalisation 72

8	TRUSS DESIGN CONSIDERATIONS	74
	8.1 Context	74
	8.1.1 Scope	74
	8.2 Classification of connections	75
	8.2.1 Connection classification	75
	8.3 Truss analysis	79

8.3.1 Analysis model configuration 79

				Page
	8.4	Truss	design	81
		8.4.1	Effective length for	
			compression members	81
		8.4.2	Guidance on member	
			selection	81
		8.4.3	Suggested truss design	
			procedure	82
	8.5	Truss	deflections	84
		8.5.1	Truss deflections	84
9			DESIGN GUIDES	85
	9.1	Plann	ed future design guides	85
10	REF	EREN	ICES	86

11 NOTATION AND ABBREVIATIONS 90

APPENDICES

А	SSHS section sizes	100
В	Limcon software	114

С ASI Design Guide comment form 115

LIST OF FIGURES

Page

Figure 2.1 Typical rigid connections 4 Figure 2.2 Typical semi-rigid connections 4 Figure 2.3 Typical simple connections 4 Figure 2.4 Moment-rotation characteristics of typical connections 6 Figure 2.5 Boundaries for stiffness calculation for beam-to-7 column connections Figure 2.6 Definition of connection elements 9 Figure 3.1 Typical cold-formed SSHS manufacturing process 14 Figure 4.1 Definition of element width for RHS flanges 25 Figure 4.2 Common structural weld types in AS 4100 31 Figure 5.1 Design throat thickness of fillet welds 46 Figure 5.2 Non-uniform stress distribution around connected face of SSHS brace member 47 Figure 5.3 Resolution of forces on throat of fillet weld 48 Figure 5.4 Connection configurations for checking weld matching 51 Figure 5.5 Lindapter hollobolt configuration 54 Figure 5.6 Huck ultra-twist process 54 Figure 5.7 Flowdrill process 55

Figure	5.8	Rectangular connection	
		component geometry	59
Figure	5.9	Rectangular component bent	
		about major axis	61
Figure	5.10	Rectangular component bent	
-		about minor axis	61
Figure	5.11	Examples of block shear	
•		failure in components	62
Figure	5.12	Block shear area in	
-		components	63
Figure	5.13	Block shear failure planes	
		inclined to the direction of the	
		applied load	64
Figure	7.1	Detailing of open and sealed	
		connections	67
Figure	7.2	Recommended weld details	69
Figure	7.3	Definition of gap and overlap	
		connections	70
Figure	7.4	Definition of bolt hole detailing	
		dimensions	72
Figure	8.1	Various types of truss	
		configuration	74
Figure		Various connection types	75
Figure	8.3	Examples of connection	
		classification	77
Figure	8.4	Classification of KT	
		connections	78
Figure	8.5	Planar truss connection	_
		modelling assumptions	80
Figure	8.6	Limits of noding eccentricity	80

Page

	F	Page
Table 4.1	Minimum SSHS material properties to AS/NZS 1163	19
Table 4.2	Range of section sizes available from Australian	
	manufacturers	20
Table 4.3	Cold-formed SSHS material properties to EN 10219-1	22
Table 4.4	SSHS material properties to	22
	AS/NZS 1163	22
Table 4.5	Design yield stress for SSHS related failure modes for	
	SSHS to AS/NZS 1163	23
Table 4.6	Classification of sections in	
Table 4.7	various design standards Classification of sections in	23
	various design standards	24
Table 4.8	Minimum plate material	
Table 4.9	properties to AS/NZS 3678 Strength of flat bars to	26
	AS/NZS 3679.1 Grade 300	27
Table 4.10	Bolt category identification	
Table 4.11	system Metric hexagon commercial	28
	bolts property class 4.6	29
Table 4.12	High strength structural bolts	
Table 1 12	Property class 8.8	30
Table 4.13 Table 4.14	Design areas of bolts Prequalified welding	30
	consumables	34
Table 4.15	Nominal tensile strength of	25
	weld metal (f _{uw})	35
Table 5.1	Strength limit state commercia bolts 4.6/S bolting category	l
	$(f_{uf} = 400 \text{ MPa}, \phi = 0.8)$	42
Table 5.2	Strength limit state high	
	strength structural bolts 8.8/S, 8.8/TB, 8.8/TF bolting	
	categories ($f_{uf} = 830$ MPa)	43
	/	

	F	Page
Table 5.3	Weld capacity factors based on weld category fillet weld, incomplete penetration butt welds and plug or slot welds	44
Table 5.4	Strength limit state design capacities of equal leg fillet welds per unit length Category SP, $\phi = 0.8$, $k_r = 1.0$, material	y
Table 5.5	thickness $\geq 3 \text{ mm}$ Strength limit state prequalifie weld size necessary to develo section yield capacity Categor SP, $\phi = 0.8$, $f_{uw} = 490 \text{ MPa}$,	р У
Table 5.6	$k_r = 1.0$ Equal leg fillet weld maximum weld tensile strength based or connected plate grade Weld category SP, $\phi = 0.8$, kr = 1.0	49 1 53
Table 7.1	Size of vent and drain holes for galvanizing SSHS members	
Table 7.2	Tolerances for SSHS member manufacture according to AS/NZS 1163	71
Table 7.3 Table 8.1	Bolt hole detailing dimensions Effective length of truss	
Table A.1	compression members Circular hollow sections	81
Table A.2	- C250 Circular hollow sections	101
	- C350	102
Table A.3	Square hollow sections - C350	104
Table A.4	Rectangular hollow sections - C350	107
Table A.5	Square hollow sections - C450	109
Table A.6	Rectangular hollow sections - C450	112

v V

PREFACE

This new series of connection publications by the Australian Steel Institute (ASI) covering design capacity tables, theory and design of individual structural steel hollow section ('tubular') member connections will be known as the Structural Steel Tubular Connection Series: 1st edition, 2013 ('Tubular Connection Series'). The Tubular Connection Series details the method of design and provides design capacity tables and detailing parameters for a range of tubular connections commonly used in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabrication and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. The Tubular Connection Series is written in the same format as and extends the range of the existing 'Structural Steel Connection Series Parts 1 and 2' published by ASI commencing 2007. Each book in the new Tubular Connection Series is numbered as a continuation from the existing series and hence this current book is referred to as 'Tubular Design Guide 20' (TDG20). The Tubular Connection Series replaces and enhances an AISC publication released in 1996 and titled 'Design of structural steel hollow section connections' (often referred to as the 'Blue Book'). With significant international research undertaken in the interim period and new and refined design models available, together with improvements in the performance of Australian produced structural steel hollow sections (SSHS), the time was appropriate to revise and update the Blue Book.

Tubular Design Guide 20 underpins the new Tubular Connection Series by providing historical and international perspectives on tubular connection design and the elemental connection theory that forms the common basis for all of the design models presented in the series. TDG20 draws heavily on the design basis documented in Handbook 1 of the existing Structural Steel Connection Series. The format and intent of the technical components of TDG20 is to provide sufficient technical basis to allow TDG20 to be a self-standing document, but at the same time, where substantive background technical basis is required, the reader may refer back to Handbook 1 of the existing Structural Steel Connection Series.

This has been achieved through extensive local and international literature reviews using ASI's close association with like organisations and searching the wealth of material contained in the ASI Library (the largest steel design library in the Southern Hemisphere). This process consolidated industry best practice, references and research papers. TDG20, in conjunction with Handbook 1, formulates the elemental equations and procedures for the assessment of bolts, bolt groups, welds, weld groups, connection components and supporting members in structural hollow section connections.

Following on from the existing Structural Steel Connection Series, the new Tubular Connection Series format, with separate design guides for individual connection types or groupings related to similar functions, is intended to facilitate addition to, or revision of, connection model theory using relevant new local or international research. Connection models developed follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection capacity assessment. Combined with a worked example and accompanying design capacity tables, each connection model provides a self-standing solution for the design engineer.

Engineering Systems has worked closely with the ASI to further develop their existing Limcon software as the companion program for this new Tubular Connection Series. The latest version of Limcon (V3.6) fully implements the new connection design models and was employed in checking the design tables. The Limcon output for one or more of the worked examples is included in an appendix to each design guide for each connection design type. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the design capacity tables provided in the Tubular Connection Series.

The existing Structural Steel Connection Series included comment/feedback forms. In the current series, these are replaced by a recently developed web based eForum facility. Every publication, seminar and talk that ASI sponsors has or will have a corresponding thread on the ASI eForum. Users are encouraged to log into the eForum and provide feedback on this current series. The eForum is located off our website at http://steel.org.au/forum/

