Design capacity tables for structural steel Volume 4: Rigid connections—Open sections

by

T.J. Hogan

contributing author

N. van der Kreek

first edition-2009

CONTENTS

			Page
	t of fig		iv
	t of tal	oles	V
	eface	author	vii viii
		e author	viii
		e contributing author edgements	ix
ΛU	KI IO WIG	sugements	IA
1		CEPT OF DESIGN GUIDES	
	1.1	Background	1
	1.2	Preliminary considerations	2
	1.3	Included connections	3
2	GEON	METRICAL DETAILS	9
	2.1	Standard parameters	9
	2.2	Connection components—	
		Bolted moment end plate	10
	2.3	Connection components—	
		Column stiffeners	12
	2.4	Bolt gauges to columns for bolted	
		moment end plate connection	15
	2.5	Flange cover plates for splices	16
	2.6	Bolting layout to webs for bolted	
	~ -	web splices	20
	2.7	Web cover plate components for	00
		bolted splices	22
3	DESI	GN BASIS	23
	3.1	Design models	23
	3.2	Minimum design actions on	
		connections	24
4	WELL	DED BEAM TO COLUMN MOMEN	т
•		NECTION	
	4.1	Description of connection	28
	4.2	Typical detailing of connection	31
	4.3	Calculation of design actions	33
	4.4	Recommended Design Model—	
		Summary of design checks	34
	4.5	Design capacity tables	35
	4.6	Configuration A—Full penetration	
		butt welds to flanges and webs	36
	4.7	Configuration B—Fillet welds	
		required to develop section	~~
	4.0	moment capacity	38
	4.8	Configuration C—Fillet welds to	40
		flanges and web	40
5	BOLT	ED MOMENT END PLATE BEAM	
	SPLIC	CE CONNECTION	
	5.1	Description of connection	42
	5.2	Typical detailing of connection	44
	5.3	Calculation of design actions	48
	5.4	Recommended design model—	
		Summary of design checks	49

ige				Page
iv		5.5	Design capacity tables	50
v		5.6	Four bolt unstiffened end plate-	_
vii			Design capacity tables	51
viii		5.7	Four bolt stiffened end plate—	
viii			Design capacity tables	53
ix		5.8	Six bolt unstiffened end plate—	
			Design capacity tables	55
1		5.9	Eight bolt stiffened end plate—	
1			Design capacity tables	57
2	~			
3	6		TED END PLATE TO COLUMN IENT CONNECTION	58
9		6.1		56
		6.2	Description of connection Typical detailing of connection	50 61
Ŭ		6.3	Calculation of design actions	66
10		6.4	Recommended design model—	00
		0.4	Summary of design checks	67
12		6.5	Design capacity tables	68
		6.6	Four bolt unstiffened end plate	69
15		6.7	Four bolt stiffened end plate	73
16		6.8	Six bolt unstiffened end plate	75
		6.9	Eight bolt stiffened end plate	77
20				
	7		TED COVER PLATE SPLICE	
22		7.1	Description of connection	78
~~		7.2	Typical detailing of connection	79
23		7.3	Calculation of design actions	82
23		7.4	Recommended design model—	
24			Summary of design checks	83
24		7.5	Design capacity tables	84
	8	BOL	TED/WELDED COVER PLATE	
28	Ŭ		CE	90
28		8.1	Description of connection	90
31		8.2	Typical detailing of connection	91
33		8.3	Calculation of design actions	94
		8.4	Recommended design model—	
34			Summary of design checks	95
35		8.5	Design capacity tables	96
	_			
36	9		Y WELDED SPLICE	
		9.1	Description of connection	102
~~		9.2	Typical detailing of connection	103
38		9.3	Calculation of design actions	105
40		9.4	Recommended design model—	106
40		0.5	Summary of design checks	106 107
		9.5	Design capacity tables	107
42	10	REF	ERENCES	110
42				
44	AF	PEN		
48		A	Rigid connections DCTs, V4	111
			comment form	111

LIST OF FIGURES

Page

Figure 1	Typical detailing for unstiffened variations of extended bolted moment end plate
Figure 2	Typical welded beam to column moment connection
Figure 3	Typical detailing for 4 bolt unstiffened bolted end plate to column connection
Figure 4	Typical detailing of bolted cover plate splice
Figure 5	Typical detailing of bolted/welded cover plate splice7
Figure 6	Typical detailing of welded splice 8
Figure 7	Bolting layouts for M24 bolts in bolted moment endplate 11
Figure 8	Bolting layouts for M20 bolts in bolted moment endplate 11
Figure 9	Transverse stiffener arrangement
Figure 10	Geometry of flange splice plates 16
Figure 11	Web splice bolting layout M20 bolts
Figure 12	Web splice bolting layout M24 bolts
Figure 13	Web cover plate components 22
-	
-	Typical welded beam to column moment connection
Figure 15	Alternative arrangements for welded beam to column connections
Figure 16	Arrangement with shop welded beams and column splices
Figure 17	Possible configurations of the welded moment beam to
Figure 18	column connection
	shop welded beam stub, beam spliced on site
Figure 19	Field welded moment connection—including erection cleat
Figure 20	Design actions on beam at column
Figure 21	Bolted moment end plate beam splice connection
Figure 22	Forms of extended bolted end plate connection
Figure 23	Typical detailing for unstiffened variations of extended bolted
Figure 24	moment end plate

	Page
Figure 25	Shims used between end plates46
-	Clearance required for
-	tensioning bolts47
	Design actions at connection48
Figure 28	Bolted end plate to column
	moment connections
Figure 29	Forms of extended end plate connection59
Figure 30	Possible configurations of the
i iguie oo	bolted moment end plate
	beam to column connection60
Figure 31	Typical detailing for 4 bolt
	unstiffened bolted end plate to column connection61
Eiguro 22	Typical detailing for haunched
Figure 52	rafter to column bolted end
	plate connection
Figure 33	Removal of column flange with
	thicker plate inserted62
•	Column doubler plate types63
Figure 35	Shims used between end
Eiguro 26	plate and column flange64 Clearance required for
i igule 50	tensioning bolts
Figure 37	Design actions on beam at
J	column
-	Bolted cover plate splice78
Figure 39	Typical detailing in flexural
E '	member
Figure 40	Typical detailing in column/ beam-column80
Figure 41	Typical detailing in tension
riguio ri	member
Figure 42	Design actions at splice82
Figure 43	Bolted/welded cover plate
	splice90
Figure 44	Typical detailing in flexural
Figure 15	member
Figure 45	Typical detailing in column/ beam column
Figure 46	Typical detailing in tension
	member
Figure 47	Design actions at splice94
-	Fully welded splice102
Figure 49	Typical detailing of welded
F '. F	splice
-	Use of backing strips
Figure 51	Preferred splice location in column104
Figure 52	Design actions at splice105

LIST OF TABLES

Page

Table 1	Connection components bolted moment end plate 10
Table 2	Stiffener material design strengths 12
Table 3	Flat bar components as stiffeners
Table 4	Flat bar width/column combinations suited to stiffening 14
Table 5	Plate width/column combinations suited to stiffening
Table 6	Suitable bolt gauges for column section flanges
Table 7	Flange cover plate width/ thickness combinations for one plate bolted cover plate splice 17
Table 8	Flange cover plate width/ thickness combinations for one plate bolted/welded cover plate splice
Table 9	Flange cover plate width/ thickness combinations for three plate bolted cover plate splice 18
Table 10	Flange cover plate width/ thickness combinations for three plate bolted/welded cover plate splice
Table 11	Values of <i>n</i> _{max} in web splice
Table 12	Values of <i>n</i> _{max} in web splice
Table 13	Universal beams, Grade 300 design section moment and web capacities
Table 14	Welded beams, Grade 300 design section moment and web capacities
Table 15	Universal beams Grade 300 design section moment and web capacities
Table 16	Welded beams Grade 300 design section moment and web capacities
Table 17	
Table 18	Welded beams Grade 300 weld configurations to achieve design section moment capacity ϕM_s 39
Table 19	Universal beams Grade 300 design moment capacity of welded connection with flange welds and web welds

	Page
Table 20	Universal beams grade 300 design moment capacity of welded connection with flange welds and web welds41
Table 21	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts welded beam/universal beam sections > 300 mm deep51
Table 22	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts universal beam sections > 200 mm deep
Table 23	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M24 bolts welded beam/universal beam sections > 300 mm deep53
Table 24	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M20 bolts universal beam sections > 200 mm deep
Table 25	•
Table 26	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M20 bolts universal beam sections > 350 mm deep
Table 27	Design moment capacity of connection ϕM_{conn} eight bolt stiffened end plate M24 bolts 8.8/TB category threads excluded from shear plane welded beam and universal beam sections > 520 mm deep57
Table 28	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 300 mm deep
Table 29	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep70

Page

Table 30	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M24 bolts haunched universal beam sections > 300 mm deep
Table 31	Design moment capacity of connection ϕM_{conn} four bolt unstiffened end plate M20 bolts haunched universal beam sections > 200 mm deep
Table 32	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 300 mm deep 73
Table 33	Design moment capacity of connection ϕM_{conn} four bolt stiffened end plate M20 bolts unhaunched universal beam sections > 200 mm deep
Table 34	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M24 bolts unhaunched welded beam/universal beam sections > 450 mm deep
Table 35	Design moment capacity of connection ϕM_{conn} six bolt unstiffened end plate M20 bolts unhaunched universal beam sections > 350 mm deep
Table 36	Design moment capacity of connection ϕM_{conn} eight bolt stiffened end plate M24 bolts unhaunched welded beam and universal beam sections > 520 mm deep
Table 37	Design moment capacity of bolted single cover plate splice universal beam sections < 400 deep M20 bolts
Table 38	Design moment capacity of bolted single cover plate splice universal beam sections > 400 deep M24 bolts
Table 39	Design moment capacity of bolted three cover plate splice universal column sections > 240 deep M24 bolts

Page

Table 40	Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts	88
Table 41	Design moment capacity of bolted three cover plate splice 900WB/1000WB welded beam sections M24 bolts	89
Table 42	Design moment capacity of bolted/welded single cover plate splice universal beam sections < 400 deep M20 bolts, 6 fillets to flange plates, 5 fillets to web plates	97
Table 43	Design moment capacity of bolted/welded single cover plate splice universal beam sections > 400 deep M24 bolts, 8 or 6 fillets to flange plates, 5 fillets to web plates	98
Table 44	Design moment capacity of bolted/welded three cover plate splice universal column sections M24 bolts, 6/8 fillets to flange plates and web plates and 6 fillets to web plates	99
Table 45	Design moment capacity of bolted three cover plate splice 700WB/800WB welded beam sections M24 bolts, 6/8 fillets to flange plates and 5 fillets to web plates	.100
Table 46	Design moment capacity of bolted/welded three cover plate splice 900WB/1000WB welded beam sections M24 bolts, 8 or 6 fillets to flange plates and 6 fillets to web plates.	.101
Table 47	Universal beams Grade 300 design section moment and shear capacities	.107
Table 48	Welded beams Grade 300 design section moment and shear capacities	.108
Table 49	Universal columns/welded columns grade 300 design section moment and shear capacities	100
	เล่าสุดการระการระการระการระการระการระการระการร	. 109

PREFACE

This new series of connection publications by the Australian Steel Institute (ASI) covering capacity tables, theory and design of individual rigid connections will be known as the Structural Steel Connections Series, Part 2: 1st ed. 2009 ('*Connection Series, Part 2*'). This Connection Series, Part 2 details the method of design and provides capacity tables and detailing parameters for a range of rigid connections commonly used for structural steel in Australia. Connections have a major engineering and economic importance in steel structures influencing design, detailing, fabrication and erection costs. Standardisation of design approach integrated with industry detailing is the key to minimum costs at each stage. This Connections (collectively the Structural Steel Connections Series or '*Connection Series*') replaces and enhances an ASI flagship publication first released in 1978 at which time connection design theories were developed for the purpose of generating and releasing connection capacity tables. The first three editions were released in permissible stress format. The fourth edition *Design of Structural Connections* (often referred to as the Green Book) was released in 1994 in limit state format but there was no subsequent release of a limit state companion document containing connection design capacity tables.

This new Connections Series, Part 2 in limit state format to the Australian Standard for Steel Structures AS 4100—1998 (Ref. 1) separates the Design Capacity Tables from the Connection Theory Handbook 1 and Design Guides for connection parts and has a separate Design Guide for each individual rigid connection type. Connection model elemental theory is referenced back to Handbook 1 in each type of connection formulated. Revision of the ASI connection theory and models included surveys of best practice in the Australian steel industry.

The new Connections Series format with separate design guides for individual connection types is intended to facilitate addition to or revision of connection model theory using any relevant new local or international research as deemed appropriate by the ASI. Connection models developed using the Handbook 1 theory follow a stylised page format with a numbered DESIGN CHECK procedure to simplify connection capacity assessment. This Connection Series, Part 2 contains both design capacity tables and design guides for individual rigid connections. *Design Capacity Tables V4: Rigid Connections—Open sections* consolidates design capacity tables contained in the individual design guides, (specifically Design Guide 10: *Bolted moment end plate to beam splice connections*; Design Guide 11: *Welded beam to column moment connection*; Design Guide 12: *Bolted end plate to column moment connection*; Design Guide 13: *Splice connections*) and is collectively known as the *Rigid connection design capacity tables V4 ('Rigid connection DCT's V4)*.

Engineering Systems has worked closely with the Australian Steel Institute to further develop Limcon as the companion program for this new Connection Series. The latest version of Limcon fully implements the new connection design models and was employed in checking the design capacity tables. The Limcon output for one or more of the worked examples is included in an appendix to each design guide for each connection design type. The program is an efficient tool covering the full range of structural connections, including those beyond the scope of the design capacity tables provided in the Connection Series.

An appendix to each publication in the series also contains an ASI comment form. Users of this Connections Series are encouraged to photocopy this one page form and forward any suggested improvements which may be incorporated into future editions.

T.J. Hogan N. van der Kreek

