Cold-Formed Steel Structures
Design of Cold-Formed Steel Structures
(To Australian/New Zealand Standard
AS/NZS 4600:2005)

by

Gregory J. Hancock BSc BE PhD DEng

Bluescope Steel Professor of Steel Structures
Dean
Faculty of Engineering & Information Technologies
University of Sydney

fourth edition - 2007
CONTENTS

PREFACE TO THE 4th EDITION viii

CHAPTER 1 INTRODUCTION 1

1.1 Design Standards and Specifications for Cold-Formed Steel 1

1.1.1 General 1

1.1.2 History of Australian Cold-Formed Steel Structures Standards and USA Specifications 1

1.1.3 New Developments in the 2005 Edition 2

1.2 Common Section Profiles and Applications of Cold-Formed Steel 4

1.3 Manufacturing Processes 10

1.4 Special Problems in the Design of Cold-Formed Sections 12

1.4.1 Local Buckling and Post-local Buckling of Thin Plate Elements 12

1.4.2 Propensity for Twisting 13

1.4.3 Distortional Buckling 14

1.4.4 Cold Work of Forming 14

1.4.5 Web Crippling under Bearing 15

1.4.6 Connections 15

1.4.7 Corrosion Protection 16

1.4.8 Inelastic Reserve Capacity 16

1.4.9 Fatigue 16

1.5 Loading Combinations 17

1.6 Limit States Design 17

1.7 Computer Analysis 19

1.8 References 20

CHAPTER 2 MATERIALS AND COLD WORK OF FORMING 22

2.1 Steel Standards 22

2.2 Typical Stress-Strain Curves 23

2.3 Ductility 25

2.4 Effects of Cold Work on Structural Steels 29

2.5 Corner Properties of Cold-Formed Sections 30

2.6 Fracture Toughness 32

2.6.1 Background 32

2.6.2 Measurement of Critical Stress Intensity Factors 32

2.6.3 Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens 34

2.6.4 Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens 35

2.7 References 36

CHAPTER 3 BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING 37

3.1 Introduction to the Finite Strip Method 37

3.2 Monosymmetric Column Study 38

3.2.1 Unlipped Channel 38

3.2.2 Lipped Channel 41

3.2.3 Lipped Channel (Fixed Ended) 44

3.3 Purlin Section Study 45

3.3.1 Channel Section 45

3.3.2 Z-Section 46
CHAPTER 6 WEBS

6.1 General 125

6.2 Webs in Shear 125
 6.2.1 Shear Buckling 125
 6.2.2 Shear Yielding 127

6.3 Webs in Bending 127

6.4 Webs in Combined Bending and Shear 129

6.5 Web Stiffeners 130

6.6 Web Crippling (Bearing) of Open Sections 130
 6.6.1 Edge Loading Alone 130
 6.6.2 Combined Bending and Edge Loading 133

6.7 Webs with Holes 134

6.8 Examples 136
 6.8.1 Combined Bending and Shear at the End of the Lap of a Continuous Z-Section Purlin 136
 6.8.2 Combined Bearing and Bending of Hat Section 138

6.9 References 139

CHAPTER 7 COMPRESSION MEMBERS

7.1 General 141

7.2 Elastic Member Buckling 141
 7.2.1 Flexural, Torsional and Flexural-Torsional Buckling 141
 7.2.2 Distortional Buckling 143

7.3 Section Capacity in Compression 143

7.4 Member Capacity in Compression 144
 7.4.1 Flexural, Torsional and Flexural-Torsional Buckling 144
 7.4.2 Distortional Buckling 146

7.5 Effect of Local Buckling 147
 7.5.1 Monosymmetric Sections 147
 7.5.2 High Strength Steel Box Sections 149

7.6 Examples 151
 7.6.1 Square Hollow Section Column 151
 7.6.2 Unlipped Channel Column 153
 7.6.3 Lipped Channel Column 157

7.7 References 164

CHAPTER 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING

8.1 Combined Axial Compressive Load and Bending - General 165

8.2 Interaction Equations for Combined Axial Compressive Load and Bending 166

8.3 Monosymmetric Sections under Combined Axial Compressive Load and Bending 167
 8.3.1 Sections Bent in a Plane of Symmetry 167
 8.3.2 Sections Bent about an Axis of Symmetry 169

8.4 Combined Axial Tensile Load and Bending 170

8.5 Examples 171
 8.5.1 Unlipped Channel Section Beam-Column Bent in Plane of Symmetry 171
 8.5.2 Unlipped Channel Section Beam-Column Bent about Plane of Symmetry 174
 8.5.3 Lipped Channel Section Beam-Column Bent in Plane of Symmetry 176

8.6 References 180