Cold-Formed Steel Structures Design of Cold-Formed Steel Structures (to AS/NZS 4600:2005) Fourth Edition 2007 Author **G.J. Hancock** ## Design of Cold-Formed Steel Structures (To Australian/New Zealand Standard AS/NZS 4600:2005) by Gregory J. Hancock BSc BE PhD DEng Bluescope Steel Professor of Steel Structures Dean Faculty of Engineering & Information Technologies University of Sydney fourth edition - 2007 ## **CONTENTS** | | Page | |--|--| | PREFACE TO THE 4 th EDITION | vii | | CHAPTER 1 INTRODUCTION | 1 | | 1.1 Design Standards and Specifications for Cold-Formed Steel | 1 | | 1.1.1 General 1.1.2 History of Australian Cold-Formed Steel Structures Standards and USA | 1 | | Specifications | 1 | | 1.1.3 New Developments in the 2005 Edition | 2 | | 1.2 Common Section Profiles and Applications of Cold-Formed Steel | 4
10 | | 1.3 Manufacturing Processes | 10 | | 1.4 Special Problems in the Design of Cold-Formed Sections 1.4.1 Local Buckling and Post-local Buckling of Thin Plate Elements 1.4.2 Propensity for Twisting 1.4.3 Distortional Buckling 1.4.4 Cold Work of Forming 1.4.5 Web Crippling under Bearing 1.4.6 Connections 1.4.7 Corrosion Protection 1.4.8 Inelastic Reserve Capacity 1.4.9 Fatigue | 12
13
14
14
15
15
16
16 | | 1.5 Loading Combinations | 17 | | 1.6 Limit States Design | 17 | | 1.7 Computer Analysis | 19 | | 1.8 References | 20 | | CHAPTER 2 MATERIALS AND COLD WORK OF FORMING | 22 | | 2.1 Steel Standards | 22 | | 2.2 Typical Stress-Strain Curves | 23 | | 2.3 Ductility | 25 | | 2.4 Effects of Cold Work on Structural Steels | 29 | | 2.5 Corner Properties of Cold-Formed Sections | 30 | | 2.6 Fracture Toughness 2.6.1 Background 2.6.2 Measurement of Critical Stress Intensity Factors 2.6.3 Evaluation of the Critical Stress Intensity Factors for Perforated Coupon Specimens 2.6.4 Evaluation of the Critical Stress Intensity Factors for Triple Bolted Specimens | 35 | | 2.7 References | 36 | | CHAPTER 3 BUCKLING MODES OF THIN-WALLED MEMBERS IN COMPRESSION AND BENDING | 37 | | 3.1 Introduction to the Finite Strip Method | 37 | | 3.2 Monosymmetric Column Study 3.2.1 Unlipped Channel 3.2.2 Lipped Channel 3.2.3 Lipped Channel (Fixed Ended) | 38
38
41
44 | | 3.3 Purlin Section Study 3.3.1 Channel Section 3.3.2 Z-Section | 45
45
46 | | CHAPTER 6 WEBS | 125 | |---|--------------------------------------| | 6.1 General | 125 | | 6.2 Webs in Shear
6.2.1 Shear Buckling
6.2.2 Shear Yielding | 125
125
127 | | 6.3 Webs in Bending | 127 | | 6.4 Webs in Combined Bending and Shear | 129 | | 6.5 Web Stiffeners | 130 | | 6.6 Web Crippling (Bearing) of Open Sections6.6.1 Edge Loading Alone6.6.2 Combined Bending and Edge Loading | 130
130
133 | | 6.7 Webs with Holes | 134 | | 6.8 Examples6.8.1 Combined Bending and Shear at the End of the Lap of a Continuous | 136
nuous Z-Section Purlin
136 | | 6.8.2 Combined Bearing and Bending of Hat Section | 138 | | 6.9 References | 139 | | CHAPTER 7 COMPRESSION MEMBERS | 141 | | 7.1 General | [′] 141 | | 7.2 Elastic Member Buckling7.2.1 Flexural, Torsional and Flexural-Torsional Buckling7.2.2 Distortional Buckling | 141
141
143 | | 7.3 Section Capacity in Compression | 143 | | 7.4 Member Capacity in Compression7.4.1 Flexural, Torsional and Flexural-Torsional Buckling7.4.2 Distortional Buckling | 144
144
146 | | 7.5 Effect of Local Buckling7.5.1 Monosymmetric Sections7.5.2 High Strength Steel Box Sections | 147
147
149 | | 7.6 Examples 7.6.1 Square Hollow Section Column 7.6.2 Unlipped Channel Column 7.6.3 Lipped Channel Column | 151
151
153
157 | | 7.7 References | 164 | | CHAPTER 8 MEMBERS IN COMBINED AXIAL LOAD AND BENDING | 165 | | 8.1 Combined Axial Compressive Load and Bending - General | 165 | | 8.2 Interaction Equations for Combined Axial Compressive Load and Be | nding 166 | | 8.3 Monosymmetric Sections under Combined Axial Compressive Load 8.3.1 Sections Bent in a Plane of Symmetry 8.3.2 Sections Bent about an Axis of Symmetry | and Bending 167
167
169 | | 8.4 Combined Axial Tensile Load and Bending | 170 | | 8.5 Examples 8.5.1 Unlipped Channel Section Beam-Column Bent in Plane of Symr 8.5.2 Unlipped Channel Section Beam-Column Bent about Plane of S 8.5.3 Lipped Channel Section Beam-Column Bent in Plane of Symmetry | Symmetry 174 | | 8.6 References | 180 | | • | 3.4.1 Hollow Flange Sections 3.4.1 Hollow Flange Beam in Bending 3.4.2 LiteSteel Beam Section in Bending | | 47
47 | |---------------------------------|--|--|---------------------------------| | 3 | 3.4.2 LiteSteel Beam Section in Bending .5 References | | 48 | | | | | 49 | | CH. | APTER 4 STIFFENED AND UNSTIFFENED CO | MPRESSION ELEMENTS | 50 | | | .1 Local Buckling | | 50 | | | 2 Postbuckling of Plate Elements in Compres | | 51 | | 4 | The state of s | ments in Pure Compression | 52 | | 4 | 4 Effective Width Formulae for Imperfect Elei 4.4.1 Stiffened Elements 4.4.2 Unstiffened Elements | nents under Stress Gradient | 56
56
56 | | 4. | 5 Effective Width Formulae for Elements with 4.5.1 Edge Stiffened Elements 4.5.2 Intermediate Stiffened Elements with C 4.5.3 Edge Stiffened Elements with Intermed more than One Intermediate Stiffener 4.5.4 Uniformly Compressed Edge Stiffened Elements | One Intermediate Stiffener
liate Stiffeners, and Stiffened Elements | 57
57 | | 4.0 | 6 Examples | and Clinichora | 59
59 | | | 4.6.1 Hat Section in Bending4.6.2 Hat Section in Bending with Intermedia4.6.3 C-Section Purlin in Bending | te Stiffener in Compression Flange | 59
63
68 | | 4.7 | References | | 75 | | CHAI | PTER 5 BEAMS, PURLINS AND BRACING | | 76 | | 5.1 | General | | 76 | | 5 | Flexural-Torsional (Lateral) Buckling 2.1 Elastic Buckling of Unbraced Simply Su 2.2 Continuous Beams and Braced Simply Su 2.3 Bending Strength Design Equations | pported Beams
Supported Beams | 77
77
81 | | | Distortional Buckling 3.1 Flange Distortional Buckling 3.2 Lateral-Distortional Buckling | | 85
86
86 | | 5 | Basic Behaviour of Purlins 4.1 Linear Response of Channel and Z-secti 4.2 Stability Considerations 4.3 Sheeting and Connection Types | ons | 89
89
89
92
94 | | 5. | Design Methods for Purlins 5.1 No Lateral and Torsional Restraint Provid 5.2 Lateral Restraint but No Torsional Restra 5.3 Lateral and Torsional Restraint | ded by the Sheeting
int | 95
95
95
96 | | 5.6 | Bracing | | 98 | | 5.7
5.
5. | 7.2 Cylindrical Tubular Members | | 101
101
102 | | 5.8
5.8
5.8
5.8
5.9 | Distortional Buckling Stress for C-Section Continuous Lapped Z-Section Purlin | o n | 102
102
107
108
116 | | 5.0 | 1.0101011003 | | 122 | | CHAPTER 9 CONNECTIONS | 182 | |---|------------| | 9.1 Introduction to Welded Connections | 182 | | 9.2 Fusion Welds | 184 | | 9.2.1 Butt Welds 9.2.2 Fillet Welds subject to Transverse Loading | 184 | | 9.2.2 Fillet Welds subject to Transverse Loading9.2.3 Fillet Welds subject to Longitudinal Loading | 184 | | 9.2.4 Combined Longitudinal and Transverse Fillet Welds | 185
186 | | 9.2.5 Flare Welds 9.2.6 Arc Spot Welds (Puddle Welds) | 186 | | 9.2.6 Arc Spot Welds (Puddle Welds) 9.2.7 Arc Seam Welds | 187
190 | | 9.3 Resistance Welds | 190 | | 9.4 Introduction to Bolted Connections | 190 | | 9.5 Design Formulae and Failure Modes for Bolted Connections | 192 | | 9.5.1 Tearout Failure of Sheet (Type I) | 193 | | 9.5.2 Bearing Failure of Sheet (Type II) 9.5.3 Net Section Tension Failure (Type III) | 193
194 | | 9.5.4 Shear Failure of Bolt (Type IV) | 194 | | 9.6 Screw Fasteners and Blind Rivets | 196 | | 9.7 Rupture | 200 | | 9.8 Examples | 201 | | 9.8.1 Welded Connection Design Example 9.8.2 Bolted Connection Design Example | 201 | | 9.9 References | 205
208 | | CHARTER 40 DIRECT OTREMOTIVATENCE | 200 | | CHAPTER 10 DIRECT STRENGTH METHOD | 209 | | 10.1 Introduction | 209 | | 10.2 Elastic Buckling Solutions | 209 | | 10.3 Strength Design Curves 10.3.1 Local Buckling | 210 | | 10.3.1 Edda Buckling 10.3.2 Flange-distortional buckling | 210
212 | | 10.3.3 Overall buckling | 212 | | 10.4 Direct Strength Equations | 213 | | 10.5 Examples | 215 | | 10.5.1 Lipped Channel Column (Direct Strength Method)10.5.2 Simply Supported C-Section Beam | 215 | | 10.6 References | 216 | | 10.0 References | 218 | | CHAPTER 11 STEEL STORAGE RACKING | 219 | | 11.1 Introduction | 219 | | 11.2 Loads | 220 | | 11.3 Methods of Structural Analysis | 221 | | 11.3.1 Upright Frames - First Order 11.3.2 Upright Frames - Second Order | 222 | | 11.3.2 [·] Upright Frames - Second Order
11.3.3 Beams | 223
223 | | 11.4 Effects of Perforations (Slots) | 223 | | 11.4.1 Section Modulus of Net Section | 224 | | 11.4.2 Minimum Net Cross-Sectional Area 11.4.3 Form Factor (Q) | 225 | | (4) | 225 | | 11.5 Member Design Rules
11.5.1 Flexural Design Curves | 225 | | 11.5.2 Column Design Curves | 225
226 | | 11. | 5.3 Distortional Buckling | | 227 | |--------|---------------------------|---|-----| | 11.6 | Example | y | 227 | | 11.7 | References | | 235 | | SUBJEC | T INDEX BY SECTION | | 236 |